IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v12y2019i4p185-d295688.html
   My bibliography  Save this article

Dynamic Bankruptcy Prediction Models for European Enterprises

Author

Listed:
  • Tomasz Korol

    (Faculty of Management and Economics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland)

Abstract

This manuscript is devoted to the issue of forecasting corporate bankruptcy. Determining a firm’s bankruptcy risk is one of the most interesting topics for investors and decision-makers. The aim of the paper is to develop and to evaluate dynamic bankruptcy prediction models for European enterprises. To conduct this objective, four forecasting models are developed with the use of four different methods—fuzzy sets, recurrent and multilayer artificial neural network, and decision trees. Such a research approach will answer the question of whether changes in indicators are relevant predictors of a company’s coming financial crisis because declines or increases in values do not immediately indicate that the company’s economic situation is deteriorating. The research relies on two samples of firms—the learning sample of 50 bankrupt and 50 non-bankrupt enterprises and the testing sample of 250 bankrupt and 250 non-bankrupt firms.

Suggested Citation

  • Tomasz Korol, 2019. "Dynamic Bankruptcy Prediction Models for European Enterprises," JRFM, MDPI, vol. 12(4), pages 1-15, December.
  • Handle: RePEc:gam:jjrfmx:v:12:y:2019:i:4:p:185-:d:295688
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/12/4/185/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/12/4/185/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert Cressy, 2006. "Why do Most Firms Die Young?," Small Business Economics, Springer, vol. 26(2), pages 103-116, March.
    2. Jackson, Richard H.G. & Wood, Anthony, 2013. "The performance of insolvency prediction and credit risk models in the UK: A comparative study," The British Accounting Review, Elsevier, vol. 45(3), pages 183-202.
    3. Lyandres, Evgeny & Zhdanov, Alexei, 2013. "Investment opportunities and bankruptcy prediction," Journal of Financial Markets, Elsevier, vol. 16(3), pages 439-476.
    4. Deakin, Eb, 1972. "Discriminant Analysis Of Predictors Of Business Failure," Journal of Accounting Research, Wiley Blackwell, vol. 10(1), pages 167-179.
    5. Marianna Succurro & Giuseppe Arcuri & Giuseppina Damiana Costanzo, 2019. "A combined approach based on robust PCA to improve bankruptcy forecasting," Review of Accounting and Finance, Emerald Group Publishing Limited, vol. 18(2), pages 296-320, May.
    6. Edward I. Altman, 2018. "Applications of Distress Prediction Models: What Have We Learned After 50 Years from the Z-Score Models?," IJFS, MDPI, vol. 6(3), pages 1-15, August.
    7. Balcaen, Sofie & Ooghe, Hubert, 2006. "35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems," The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
    8. Lensberg, Terje & Eilifsen, Aasmund & McKee, Thomas E., 2006. "Bankruptcy theory development and classification via genetic programming," European Journal of Operational Research, Elsevier, vol. 169(2), pages 677-697, March.
    9. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    10. Doyle, Jeffrey & Ge, Weili & McVay, Sarah, 2007. "Determinants of weaknesses in internal control over financial reporting," Journal of Accounting and Economics, Elsevier, vol. 44(1-2), pages 193-223, September.
    11. Pakes, Ariel & Ericson, Richard, 1998. "Empirical Implications of Alternative Models of Firm Dynamics," Journal of Economic Theory, Elsevier, vol. 79(1), pages 1-45, March.
    12. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 123-127.
    13. du Jardin, Philippe, 2016. "A two-stage classification technique for bankruptcy prediction," European Journal of Operational Research, Elsevier, vol. 254(1), pages 236-252.
    14. Tam, KY, 1991. "Neural network models and the prediction of bank bankruptcy," Omega, Elsevier, vol. 19(5), pages 429-445.
    15. Tian, Shaonan & Yu, Yan, 2017. "Financial ratios and bankruptcy predictions: An international evidence," International Review of Economics & Finance, Elsevier, vol. 51(C), pages 510-526.
    16. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
    17. Crone, Sven F. & Finlay, Steven, 2012. "Instance sampling in credit scoring: An empirical study of sample size and balancing," International Journal of Forecasting, Elsevier, vol. 28(1), pages 224-238.
    18. Laitinen, Erkki K., 2007. "Classification accuracy and correlation: LDA in failure prediction," European Journal of Operational Research, Elsevier, vol. 183(1), pages 210-225, November.
    19. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    20. de Andres, Javier & Landajo, Manuel & Lorca, Pedro, 2005. "Forecasting business profitability by using classification techniques: A comparative analysis based on a Spanish case," European Journal of Operational Research, Elsevier, vol. 167(2), pages 518-542, December.
    21. du Jardin, Philippe & Séverin, Eric, 2011. "Predicting corporate bankruptcy using a self-organizing map: An empirical study to improve the forecasting horizon of a financial failure model," MPRA Paper 44262, University Library of Munich, Germany.
    22. Sudheer Chava & Robert A. Jarrow, 2008. "Bankruptcy Prediction with Industry Effects," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 21, pages 517-549, World Scientific Publishing Co. Pte. Ltd..
    23. Wu, Desheng Dash & Zhang, Yidong & Wu, Dexiang & Olson, David L., 2010. "Fuzzy multi-objective programming for supplier selection and risk modeling: A possibility approach," European Journal of Operational Research, Elsevier, vol. 200(3), pages 774-787, February.
    24. Arindam Bandyopadhyay, 2006. "Predicting probability of default of Indian corporate bonds: logistic and Z-score model approaches," Journal of Risk Finance, Emerald Group Publishing, vol. 7(3), pages 255-272, May.
    25. Psillaki, Maria & Tsolas, Ioannis E. & Margaritis, Dimitris, 2010. "Evaluation of credit risk based on firm performance," European Journal of Operational Research, Elsevier, vol. 201(3), pages 873-881, March.
    26. Michael Doumpos & Constantin Zopounidis, 1999. "A Multicriteria Discrimination Method for the Prediction of Financial Distress: The Case of Greece," Multinational Finance Journal, Multinational Finance Journal, vol. 3(2), pages 71-101, June.
    27. Jayasekera, Ranadeva, 2018. "Prediction of company failure: Past, present and promising directions for the future," International Review of Financial Analysis, Elsevier, vol. 55(C), pages 196-208.
    28. Li, Leon & Faff, Robert, 2019. "Predicting corporate bankruptcy: What matters?," International Review of Economics & Finance, Elsevier, vol. 62(C), pages 1-19.
    29. Aneta Ptak-Chmielewska, 2019. "Predicting Micro-Enterprise Failures Using Data Mining Techniques," JRFM, MDPI, vol. 12(1), pages 1-17, February.
    30. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    31. Jovanovic, Boyan, 1982. "Selection and the Evolution of Industry," Econometrica, Econometric Society, vol. 50(3), pages 649-670, May.
    32. Dong, Manh Cuong & Tian, Shaonan & Chen, Cathy W.S., 2018. "Predicting failure risk using financial ratios: Quantile hazard model approach," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 204-220.
    33. du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
    34. Liang, Deron & Lu, Chia-Chi & Tsai, Chih-Fong & Shih, Guan-An, 2016. "Financial ratios and corporate governance indicators in bankruptcy prediction: A comprehensive study," European Journal of Operational Research, Elsevier, vol. 252(2), pages 561-572.
    35. Vicente García & Ana I. Marqués & J. Salvador Sánchez & Humberto J. Ochoa-Domínguez, 2019. "Dissimilarity-Based Linear Models for Corporate Bankruptcy Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1019-1031, March.
    36. Chun-Yu Ho & Patrick McCarthy & Yi Yang & Xuan Ye, 2013. "Bankruptcy in the pulp and paper industry: market’s reaction and prediction," Empirical Economics, Springer, vol. 45(3), pages 1205-1232, December.
    37. Mensah, Ym, 1984. "An Examination Of The Stationarity Of Multivariate Bankruptcy Prediction Models - A Methodological Study," Journal of Accounting Research, Wiley Blackwell, vol. 22(1), pages 380-395.
    38. Tian, Shaonan & Yu, Yan & Guo, Hui, 2015. "Variable selection and corporate bankruptcy forecasts," Journal of Banking & Finance, Elsevier, vol. 52(C), pages 89-100.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katarina Valaskova & Pavol Durana & Peter Adamko & Jaroslav Jaros, 2020. "Financial Compass for Slovak Enterprises: Modeling Economic Stability of Agricultural Entities," JRFM, MDPI, vol. 13(5), pages 1-16, May.
    2. Bogdan POPA, 2022. "Measuring the Risk of Bankruptcy in the Romanian Economy. Developments and Perspectives," Finante - provocarile viitorului (Finance - Challenges of the Future), University of Craiova, Faculty of Economics and Business Administration, vol. 1(24), pages 91-104, November.
    3. Beata Gavurova & Sylvia Jencova & Radovan Bacik & Marta Miskufova & Stanislav Letkovsky, 2022. "Artificial intelligence in predicting the bankruptcy of non-financial corporations," Oeconomia Copernicana, Institute of Economic Research, vol. 13(4), pages 1215-1251, December.
    4. Daniela Rybárová & Helena Majdúchová & Peter Štetka & Darina Luščíková, 2021. "Reliability and Accuracy of Alternative Default Prediction Models: Evidence from Slovakia," IJFS, MDPI, vol. 9(4), pages 1-33, November.
    5. Yu Zhao & Shaopeng Wei & Yu Guo & Qing Yang & Xingyan Chen & Qing Li & Fuzhen Zhuang & Ji Liu & Gang Kou, 2022. "Combining Intra-Risk and Contagion Risk for Enterprise Bankruptcy Prediction Using Graph Neural Networks," Papers 2202.03874, arXiv.org, revised Jul 2022.
    6. Dawen Yan & Guotai Chi & Kin Keung Lai, 2020. "Financial Distress Prediction and Feature Selection in Multiple Periods by Lassoing Unconstrained Distributed Lag Non-linear Models," Mathematics, MDPI, vol. 8(8), pages 1-27, August.
    7. Sebastian Klaudiusz Tomczak, 2021. "Ratio Selection between Six Sectors in the Visegrad Group Using Parametric and Nonparametric ANOVA," Energies, MDPI, vol. 14(21), pages 1-20, November.
    8. Jarmila Horváthová & Martina Mokrišová & Martin Bača, 2023. "Bankruptcy Prediction for Sustainability of Businesses: The Application of Graph Theoretical Modeling," Mathematics, MDPI, vol. 11(24), pages 1-20, December.
    9. Katarina Valaskova & Dominika Gajdosikova & Jaroslav Belas, 2023. "Bankruptcy prediction in the post-pandemic period: A case study of Visegrad Group countries," Oeconomia Copernicana, Institute of Economic Research, vol. 14(1), pages 253-293, March.
    10. Andrzej Jaki & Wojciech Ćwięk, 2020. "Bankruptcy Prediction Models Based on Value Measures," JRFM, MDPI, vol. 14(1), pages 1-14, December.
    11. Denis Kušter & Bojana Vuković & Sunčica Milutinović & Kristina Peštović & Teodora Tica & Dejan Jakšić, 2023. "Early Insolvency Prediction as a Key for Sustainable Business Growth," Sustainability, MDPI, vol. 15(21), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    2. Dagmar Camska & Jiri Klecka, 2020. "Comparison of Prediction Models Applied in Economic Recession and Expansion," JRFM, MDPI, vol. 13(3), pages 1-16, March.
    3. du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
    4. Mohammad Mahdi Mousavi & Jamal Ouenniche, 2018. "Multi-criteria ranking of corporate distress prediction models: empirical evaluation and methodological contributions," Annals of Operations Research, Springer, vol. 271(2), pages 853-886, December.
    5. Adriana Csikosova & Maria Janoskova & Katarina Culkova, 2020. "Application of Discriminant Analysis for Avoiding the Risk of Quarry Operation Failure," JRFM, MDPI, vol. 13(10), pages 1-14, September.
    6. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    7. Mai, Feng & Tian, Shaonan & Lee, Chihoon & Ma, Ling, 2019. "Deep learning models for bankruptcy prediction using textual disclosures," European Journal of Operational Research, Elsevier, vol. 274(2), pages 743-758.
    8. Francesco Ciampi & Valentina Cillo & Fabio Fiano, 2020. "Combining Kohonen maps and prior payment behavior for small enterprise default prediction," Small Business Economics, Springer, vol. 54(4), pages 1007-1039, April.
    9. Eric Séverin & David Veganzones, 2021. "Can earnings management information improve bankruptcy prediction models?," Annals of Operations Research, Springer, vol. 306(1), pages 247-272, November.
    10. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    11. Abinzano, Isabel & Gonzalez-Urteaga, Ana & Muga, Luis & Sanchez, Santiago, 2020. "Performance of default-risk measures: the sample matters," Journal of Banking & Finance, Elsevier, vol. 120(C).
    12. du Jardin, Philippe, 2012. "The influence of variable selection methods on the accuracy of bankruptcy prediction models," MPRA Paper 44383, University Library of Munich, Germany.
    13. Soo Young Kim, 2018. "Predicting hospitality financial distress with ensemble models: the case of US hotels, restaurants, and amusement and recreation," Service Business, Springer;Pan-Pacific Business Association, vol. 12(3), pages 483-503, September.
    14. Theodore Metaxas & Athanasios Romanopoulos, 2023. "A Literature Review on the Financial Determinants of Hotel Default," JRFM, MDPI, vol. 16(7), pages 1-19, July.
    15. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    16. Koen W. de Bock, 2017. "The best of two worlds: Balancing model strength and comprehensibility in business failure prediction using spline-rule ensembles," Post-Print hal-01588059, HAL.
    17. Hyeongjun Kim & Hoon Cho & Doojin Ryu, 2020. "Corporate Default Predictions Using Machine Learning: Literature Review," Sustainability, MDPI, vol. 12(16), pages 1-11, August.
    18. Katarina Valaskova & Dominika Gajdosikova & Jaroslav Belas, 2023. "Bankruptcy prediction in the post-pandemic period: A case study of Visegrad Group countries," Oeconomia Copernicana, Institute of Economic Research, vol. 14(1), pages 253-293, March.
    19. Ben Jabeur, Sami & Serret, Vanessa, 2023. "Bankruptcy prediction using fuzzy convolutional neural networks," Research in International Business and Finance, Elsevier, vol. 64(C).
    20. Zeineb Affes & Rania Hentati-Kaffel, 2019. "Predicting US Banks Bankruptcy: Logit Versus Canonical Discriminant Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 199-244, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:12:y:2019:i:4:p:185-:d:295688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.