IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v12y2015i1p81-97.html
   My bibliography  Save this article

A comparison of Bayesian, Hazard, and Mixed Logit model of bankruptcy prediction

Author

Listed:
  • Samir Trabelsi
  • Roc He
  • Lawrence He
  • Martin Kusy

Abstract

The purpose of this study is to examine the impact of the choice of cut-off points, sampling procedures, and business cycles on the forecasting accuracy of bankruptcy prediction models. A misclassification can result in an erroneous prediction resulting in prohibitive costs to firms, investors, and the economy. A salient feature of our study is that our analysis includes both parametric and nonparametric bankruptcy prediction models. A sample of firms from the Bankruptcy Research Database in the U.S. is used to evaluate the relative performance of the three most commonly used bankruptcy prediction models: Bayesian, Hazard, and Mixed Logit. Our results indicate that the choice of the cut-off point and sampling procedures affect the rankings of the three models. We show that the empirical cut-off point estimated from the training sample result in the lowest misclassification costs for all three models. When tests are conducted using randomly selected samples, and all specifications of type I costs over type II costs are taken into account, the Mixed Logit model performs slightly better than the Bayesian model and much better than the Hazard model. However, when tests are conducted across business-cycle samples, the Bayesian model has the best performance and much better predictive power in recent business cycles. This study extends recent research comparing the performance of bankruptcy prediction models by identifying under what conditions a model performs better. It also allays the concerns for a range of users groups, including auditors, shareholders, employees, suppliers, rating agencies, and creditors’ with respect to assessing corporate failure risk. Copyright © Her Majesty the Queen in Right of Canada 2015

Suggested Citation

  • Samir Trabelsi & Roc He & Lawrence He & Martin Kusy, 2015. "A comparison of Bayesian, Hazard, and Mixed Logit model of bankruptcy prediction," Computational Management Science, Springer, vol. 12(1), pages 81-97, January.
  • Handle: RePEc:spr:comgts:v:12:y:2015:i:1:p:81-97
    DOI: 10.1007/s10287-013-0200-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10287-013-0200-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10287-013-0200-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sumit Sarkar & Ram S. Sriram, 2001. "Bayesian Models for Early Warning of Bank Failures," Management Science, INFORMS, vol. 47(11), pages 1457-1475, November.
    2. Sun, Lili & Shenoy, Prakash P., 2007. "Using Bayesian networks for bankruptcy prediction: Some methodological issues," European Journal of Operational Research, Elsevier, vol. 180(2), pages 738-753, July.
    3. Tam, KY, 1991. "Neural network models and the prediction of bank bankruptcy," Omega, Elsevier, vol. 19(5), pages 429-445.
    4. Grice, John Stephen & Dugan, Michael T, 2001. "The Limitations of Bankruptcy Prediction Models: Some Cautions for the Researcher," Review of Quantitative Finance and Accounting, Springer, vol. 17(2), pages 151-166, September.
    5. James B. Thomson & Gary Whalen, 1988. "Using financial data to identify changes in bank condition," Economic Review, Federal Reserve Bank of Cleveland, vol. 24(Q II), pages 17-26.
    6. West, Robert Craig, 1985. "A factor-analytic approach to bank condition," Journal of Banking & Finance, Elsevier, vol. 9(2), pages 253-266, June.
    7. Altman, Edward I. & Haldeman, Robert G. & Narayanan, P., 1977. "ZETATM analysis A new model to identify bankruptcy risk of corporations," Journal of Banking & Finance, Elsevier, vol. 1(1), pages 29-54, June.
    8. Thomas E. McKee, 2003. "Rough sets bankruptcy prediction models versus auditor signalling rates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(8), pages 569-586.
    9. Martin, Daniel, 1977. "Early warning of bank failure : A logit regression approach," Journal of Banking & Finance, Elsevier, vol. 1(3), pages 249-276, November.
    10. Shumway, Tyler, 2001. "Forecasting Bankruptcy More Accurately: A Simple Hazard Model," The Journal of Business, University of Chicago Press, vol. 74(1), pages 101-124, January.
    11. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    12. Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 59-82.
    13. Harlan Platt & Marjorie Platt, 2002. "Predicting corporate financial distress: Reflections on choice-based sample bias," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 26(2), pages 184-199, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrzej Geise & Magdalena Kuczmarska & Jarosław Pawlowski, 2021. "Corporate Failure Prediction of Construction Companies in Poland: Evidence from Logit Model," European Research Studies Journal, European Research Studies Journal, vol. 0(1), pages 99-116.
    2. Frank Ranganai Matenda & Mabutho Sibanda & Eriyoti Chikodza & Victor Gumbo, 2022. "Bankruptcy prediction for private firms in developing economies: a scoping review and guidance for future research," Management Review Quarterly, Springer, vol. 72(4), pages 927-966, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leila Bateni & Farshid Asghari, 2020. "Bankruptcy Prediction Using Logit and Genetic Algorithm Models: A Comparative Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 335-348, January.
    2. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    3. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
    4. Nijskens, Rob & Mokas, Dimitris, 2019. "Credit Risk in Commercial Real Estate Bank Loans : The Role of Idiosyncratic versus Macro-Economic Factors," Other publications TiSEM ea4f2f0e-dc50-4987-91d3-6, Tilburg University, School of Economics and Management.
    5. Cakir, Murat, 2005. "Firma Başarısızlığının Dinamiklerinin Belirlenmesinde Makina Öğrenmesi Teknikleri: Ampirik Uygulamalar ve Karşılaştırmalı Analiz [Machine Learning Techniques in Determining the Dynamics of Corporat," MPRA Paper 55975, University Library of Munich, Germany.
    6. Santosh Kumar Shrivastav & P. Janaki Ramudu, 2020. "Bankruptcy Prediction and Stress Quantification Using Support Vector Machine: Evidence from Indian Banks," Risks, MDPI, vol. 8(2), pages 1-22, May.
    7. Sun, Lili & Shenoy, Prakash P., 2007. "Using Bayesian networks for bankruptcy prediction: Some methodological issues," European Journal of Operational Research, Elsevier, vol. 180(2), pages 738-753, July.
    8. Ruey-Ching Hwang & K. F. Cheng & Jack C. Lee, 2007. "A semiparametric method for predicting bankruptcy," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(5), pages 317-342.
    9. Chiuling Lu & Ann Yang & Jui-Feng Huang, 2015. "Bankruptcy predictions for U.S. air carrier operations: a study of financial data," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 39(3), pages 574-589, July.
    10. Kolari, James & Glennon, Dennis & Shin, Hwan & Caputo, Michele, 2002. "Predicting large US commercial bank failures," Journal of Economics and Business, Elsevier, vol. 54(4), pages 361-387.
    11. John Nkwoma Inekwe, 2016. "Financial Distress, Employees’ Welfare and Entrepreneurship Among SMEs," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 129(3), pages 1135-1153, December.
    12. Dawen Yan & Guotai Chi & Kin Keung Lai, 2020. "Financial Distress Prediction and Feature Selection in Multiple Periods by Lassoing Unconstrained Distributed Lag Non-linear Models," Mathematics, MDPI, vol. 8(8), pages 1-27, August.
    13. Evangelos C. Charalambakis & Ian Garrett, 2016. "On the prediction of financial distress in developed and emerging markets: Does the choice of accounting and market information matter? A comparison of UK and Indian Firms," Review of Quantitative Finance and Accounting, Springer, vol. 47(1), pages 1-28, July.
    14. Dimitras, A. I. & Zanakis, S. H. & Zopounidis, C., 1996. "A survey of business failures with an emphasis on prediction methods and industrial applications," European Journal of Operational Research, Elsevier, vol. 90(3), pages 487-513, May.
    15. Vicente García & Ana I. Marqués & J. Salvador Sánchez & Humberto J. Ochoa-Domínguez, 2019. "Dissimilarity-Based Linear Models for Corporate Bankruptcy Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1019-1031, March.
    16. Sajad Abdipour & Ahmad Nasseri & Mojtaba Akbarpour & Hossein Parsian & Shahrzad Zamani, 2013. "Integrating Neural Network and Colonial Competitive Algorithm: A New Approach for Predicting Bankruptcy in Tehran Security Exchange," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 3(11), pages 1528-1539, November.
    17. Maurice Peat, 2001. "Bankruptcy Probability: A Theoretical and Empirical Examination," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 20, July-Dece.
    18. Kerstin Lopatta & Mario Albert Gloger & Reemda Jaeschke, 2017. "Can Language Predict Bankruptcy? The Explanatory Power of Tone in 10‐K Filings," Accounting Perspectives, John Wiley & Sons, vol. 16(4), pages 315-343, December.
    19. Alam, Nurul & Gao, Junbin & Jones, Stewart, 2021. "Corporate failure prediction: An evaluation of deep learning vs discrete hazard models," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 75(C).
    20. Bhanu Pratap Singh & Alok Kumar Mishra, 2016. "Re-estimation and comparisons of alternative accounting based bankruptcy prediction models for Indian companies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-28, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:12:y:2015:i:1:p:81-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.