IDEAS home Printed from https://ideas.repec.org/a/eee/lajcba/v1y2020i1s2666143820300119.html
   My bibliography  Save this article

Pattern recognition of financial institutions’ payment behavior

Author

Listed:
  • León, Carlos
  • Barucca, Paolo
  • Acero, Oscar
  • Gage, Gerardo
  • Ortega, Fabio

Abstract

We present a general supervised machine-learning methodology to represent the payment behavior of financial institutions starting from a database of transactions in the Colombian large-value payment system. The methodology learns a feedforward artificial neural network parameterization to represent the payment patterns through 113 features corresponding to financial institutions’ contribution to payments, funding habits, payment timing, payment concentration, centrality in the payment network, and systemic effects due to failure to pay. We then use the representation to compare the coherence of out-of-sample payment patterns of the same institution to its characteristic patterns. The performance is remarkable, with an out-of-sample classification error around three percent. The performance is robust to reductions in the number of features by unsupervised feature selection. In addition, we confirm that network centrality and systemic effect features definitively contribute to enhancing the performance of the methodology. For financial authorities, this is a major step towards the automated detection of individual financial institutions’ anomalous behaviors in payment systems.

Suggested Citation

  • León, Carlos & Barucca, Paolo & Acero, Oscar & Gage, Gerardo & Ortega, Fabio, 2020. "Pattern recognition of financial institutions’ payment behavior," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).
  • Handle: RePEc:eee:lajcba:v:1:y:2020:i:1:s2666143820300119
    DOI: 10.1016/j.latcb.2020.100011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2666143820300119
    Download Restriction: Gold Open Access

    File URL: https://libkey.io/10.1016/j.latcb.2020.100011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. León, Carlos & Machado, Clara & Sarmiento, Miguel, 2018. "Identifying central bank liquidity super-spreaders in interbank funds networks," Journal of Financial Stability, Elsevier, vol. 35(C), pages 75-92.
    2. Carlos León & José Fernando Moreno & Jorge Cely, 2016. "Whose Balance Sheet is this? Neural Networks for Banks’ Pattern Recognition," Borradores de Economia 959, Banco de la Republica de Colombia.
    3. Zhang, Guoqiang & Y. Hu, Michael & Eddy Patuwo, B. & C. Indro, Daniel, 1999. "Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis," European Journal of Operational Research, Elsevier, vol. 116(1), pages 16-32, July.
    4. Fioramanti, Marco, 2008. "Predicting sovereign debt crises using artificial neural networks: A comparative approach," Journal of Financial Stability, Elsevier, vol. 4(2), pages 149-164, June.
    5. Demyanyk, Yuliya & Hasan, Iftekhar, 2010. "Financial crises and bank failures: A review of prediction methods," Omega, Elsevier, vol. 38(5), pages 315-324, October.
    6. Andrew G. Haldane & Robert M. May, 2011. "Systemic risk in banking ecosystems," Nature, Nature, vol. 469(7330), pages 351-355, January.
    7. Shorouq Fathi Eletter & Saad Ghaleb Yaseen & Ghaleb Awad Elrefae, 2010. "Neuro-Based Artificial Intelligence Model for Loan Decisions," American Journal of Economics and Business Administration, Science Publications, vol. 2(1), pages 27-34, March.
    8. Sarlin, Peter & Holopainen, Markus, 2016. "Toward robust early-warning models: a horse race, ensembles and model uncertainty," Working Paper Series 1900, European Central Bank.
    9. León, Carlos & Machado, Clara & Sarmiento, Miguel, 2018. "Identifying central bank liquidity super-spreaders in interbank funds networks," Journal of Financial Stability, Elsevier, vol. 35(C), pages 75-92.
    10. Claudio Borio, 2003. "Towards a Macroprudential Framework for Financial Supervision and Regulation?," CESifo Economic Studies, CESifo Group, vol. 49(2), pages 181-215.
    11. Tam, KY, 1991. "Neural network models and the prediction of bank bankruptcy," Omega, Elsevier, vol. 19(5), pages 429-445.
    12. Martinez-Jaramillo, Serafin & Alexandrova-Kabadjova, Biliana & Bravo-Benitez, Bernardo & Solórzano-Margain, Juan Pablo, 2014. "An empirical study of the Mexican banking system’s network and its implications for systemic risk," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 242-265.
    13. Angelini, Eliana & di Tollo, Giacomo & Roli, Andrea, 2008. "A neural network approach for credit risk evaluation," The Quarterly Review of Economics and Finance, Elsevier, vol. 48(4), pages 733-755, November.
    14. Rebecca Wu, 1997. "Neural network models: Foundations and applications to an audit decision problem," Annals of Operations Research, Springer, vol. 75(0), pages 291-301, January.
    15. James J. McAndrews & Samira Rajan, 2000. "The timing and funding of Fedwire funds transfers," Economic Policy Review, Federal Reserve Bank of New York, issue Jul, pages 17-32.
    16. Markus Holopainen & Peter Sarlin, 2015. "Toward robust early-warning models: A horse race, ensembles and model uncertainty," Papers 1501.04682, arXiv.org, revised Apr 2016.
    17. León, Carlos, 2020. "Detecting anomalous payments networks: A dimensionality-reduction approach," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).
    18. Denbee, Edward & Garratt, Rodney & Zimmerman, Peter, 2014. "Variations in liquidity provision in real-time payment systems," Bank of England working papers 513, Bank of England.
    19. Christopher Becher & Marco Galbiati & Merxe Tudela, 2008. "The timing and funding of CHAPS sterling payments," Economic Policy Review, Federal Reserve Bank of New York, vol. 14(Sep), pages 113-133.
    20. Khediri, Karim Ben & Charfeddine, Lanouar & Youssef, Slah Ben, 2015. "Islamic versus conventional banks in the GCC countries: A comparative study using classification techniques," Research in International Business and Finance, Elsevier, vol. 33(C), pages 75-98.
    21. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    22. Demyanyk, Yuliya & Hasan, Iftekhar, 2010. "Financial crises and bank failures: A review of prediction methods," Omega, Elsevier, vol. 38(5), pages 315-324, October.
    23. repec:zbw:bofrdp:2009_035 is not listed on IDEAS
    24. Soramäki, Kimmo & Cook, Samantha, 2013. "SinkRank: An algorithm for identifying systemically important banks in payment systems," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 7, pages 1-27.
    25. Leonard Sabetti & Ronald Heijmans, 2020. "Shallow or deep? Detecting anomalous flows in the Canadian Automated Clearing and Settlement System using an autoencoder," Working Papers 681, DNB.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ajit Desai & Jacob Sharples & Anneke Kosse, 2024. "Finding a needle in a haystack: a machine learning framework for anomaly detection in payment systems," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Granular data: new horizons and challenges, volume 61, Bank for International Settlements.
    2. Irving Fisher Committee, 2024. "Granular data: new horizons and challenges," IFC Bulletins, Bank for International Settlements, number 61.
    3. Sabetti, Leonard & Heijmans, Ronald, 2021. "Shallow or deep? Training an autoencoder to detect anomalous flows in a retail payment system," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 2(2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos León & José Fernando Moreno & Jorge Cely, 2016. "Whose Balance Sheet is this? Neural Networks for Banks’ Pattern Recognition," Borradores de Economia 959, Banco de la Republica de Colombia.
    2. León, C., 2015. "Financial stability from a network perspective," Other publications TiSEM bb2e4e44-e842-45c6-a946-4, Tilburg University, School of Economics and Management.
    3. Caceres-Santos, Jonnathan & Rodriguez-Martinez, Anahi & Caccioli, Fabio & Martinez-Jaramillo, Serafin, 2020. "Systemic risk and other interdependencies among banks in Bolivia," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).
    4. Tabak, Benjamin Miranda & Silva, Thiago Christiano & Fiche, Marcelo Estrela & Braz, Tércio, 2021. "Citation likelihood analysis of the interbank financial networks literature: A machine learning and bibliometric approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    5. Martínez, Constanza & León, Carlos, 2016. "The cost of collateralized borrowing in the Colombian money market: Does connectedness matter?," Journal of Financial Stability, Elsevier, vol. 25(C), pages 193-205.
    6. Affinito, Massimiliano & Franco Pozzolo, Alberto, 2017. "The interbank network across the global financial crisis: Evidence from Italy," Journal of Banking & Finance, Elsevier, vol. 80(C), pages 90-107.
    7. Rainone, Edoardo, 2020. "The network nature of over-the-counter interest rates," Journal of Financial Markets, Elsevier, vol. 47(C).
    8. León, Carlos & Machado, Clara & Sarmiento, Miguel, 2018. "Identifying central bank liquidity super-spreaders in interbank funds networks," Journal of Financial Stability, Elsevier, vol. 35(C), pages 75-92.
    9. Arreola Hernandez, Jose & Kang, Sang Hoon & Shahzad, Syed Jawad Hussain & Yoon, Seong-Min, 2020. "Spillovers and diversification potential of bank equity returns from developed and emerging America," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    10. Jian Min & Jiaojiao Zhu & Jian-Bo Yang, 2020. "The Risk Monitoring of the Financial Ecological Environment in Chinese Outward Foreign Direct Investment Based on a Complex Network," Sustainability, MDPI, vol. 12(22), pages 1-26, November.
    11. Ajit Desai & Jacob Sharples & Anneke Kosse, 2024. "Finding a needle in a haystack: a machine learning framework for anomaly detection in payment systems," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Granular data: new horizons and challenges, volume 61, Bank for International Settlements.
    12. Carlos León & Constanza Martínez-Ventura & Freddy Cepeda-López, 2019. "Short-Term Liquidity Contagion in the Interbank Market," Revista Cuadernos de Economia, Universidad Nacional de Colombia, FCE, CID, vol. 38(76), pages 51-80, January.
    13. León, Carlos & Miguélez, Javier, 2021. "Interbank relationship lending revisited: Are the funds available at a similar price?," Research in International Business and Finance, Elsevier, vol. 58(C).
    14. Carlos León & Fabio Ortega, 2018. "Nowcasting Economic Activity with Electronic Payments Data: A Predictive Modeling Approach," Revista de Economía del Rosario, Universidad del Rosario, vol. 21(2), pages 381-407, December.
    15. Carlos León & Jhonatan Pérez & Luc Renneboog, 2014. "A multi-layer network of the sovereign securities market," Borradores de Economia 840, Banco de la Republica de Colombia.
    16. Sevim, Cuneyt & Oztekin, Asil & Bali, Ozkan & Gumus, Serkan & Guresen, Erkam, 2014. "Developing an early warning system to predict currency crises," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1095-1104.
    17. Aref Mahdavi Ardekani & Isabelle Distinguin & Amine Tarazi, 2019. "Interbank network characteristics, monetary policy "News" and sensitivity of bank stock returns," Working Papers hal-02384533, HAL.
    18. Téllez-León, Isela-Elizabeth & Martínez-Jaramillo, Serafín & O. L. Escobar-Farfán, Luis & Hochreiter, Ronald, 2021. "How are network centrality metrics related to interest rates in the Mexican secured and unsecured interbank markets?," Journal of Financial Stability, Elsevier, vol. 55(C).
    19. Akkoç, Soner, 2012. "An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish cred," European Journal of Operational Research, Elsevier, vol. 222(1), pages 168-178.
    20. Carlos A. Arango & Freddy H. Cepeda, 2016. "Non-monotonic Tradeoffs of Tiering in a Large Value Payment System," Borradores de Economia 946, Banco de la Republica de Colombia.

    More about this item

    Keywords

    Payments; Neural networks; Feature selection; Machine learning; Pattern recognition;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • E42 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Monetary Sytsems; Standards; Regimes; Government and the Monetary System
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lajcba:v:1:y:2020:i:1:s2666143820300119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/latin-american-journal-of-central-banking .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.