Evaluating the Application of a Financial Early Warning System in the Iranian Banking System
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Lestano & Jacobs, Jan & Kuper, Gerard H., 2003.
"Indicators of financial crises do work! : an early-warning system for six Asian countries,"
CCSO Working Papers
200313, University of Groningen, CCSO Centre for Economic Research.
- Lestano & Jan Jacobs & Gerard H. Kuper, 2004. "Indicators of financial crises do work! An early-warning system for six Asian countries," International Finance 0409004, University Library of Munich, Germany.
- Lestano & Jan Jacobs & Gerard H. Kuper, 2004. "Indicators of financial crises do work! An early-warning system for six Asian countries," International Finance 0409001, University Library of Munich, Germany.
- Aykut Kibritçioğlu, 2004. "An Analysis of Early Warning Signals of Currency Crises in Turkey, 1986-2004," International Finance kibritcioglu_aykut.62178-, Socionet.
- O'Brien, Martin & Wosser, Michael, 2018. "An Early Warning System for Systemic Banking Crises: A Robust Model Specification," Research Technical Papers 9/RT/18, Central Bank of Ireland.
- Hali J. Edison, 2003.
"Do indicators of financial crises work? An evaluation of an early warning system,"
International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 8(1), pages 11-53.
- Hali J. Edison, 2000. "Do indicators of financial crises work? an evaluation of an early warning system," International Finance Discussion Papers 675, Board of Governors of the Federal Reserve System (U.S.).
- Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 123-127.
- Tam, KY, 1991. "Neural network models and the prediction of bank bankruptcy," Omega, Elsevier, vol. 19(5), pages 429-445.
- David J. Hand & Heikki Mannila & Padhraic Smyth, 2001. "Principles of Data Mining," MIT Press Books, The MIT Press, edition 1, volume 1, number 026208290x, December.
- Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
- Tanaka, Katsuyuki & Kinkyo, Takuji & Hamori, Shigeyuki, 2016. "Random forests-based early warning system for bank failures," Economics Letters, Elsevier, vol. 148(C), pages 118-121.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li Xian Liu & Shuangzhe Liu & Milind Sathye, 2021. "Predicting Bank Failures: A Synthesis of Literature and Directions for Future Research," JRFM, MDPI, vol. 14(10), pages 1-24, October.
- Enrico Supino & Nicola Piras, 2022. "Le performance dei modelli di credit scoring in contesti di forte instabilit? macroeconomica: il ruolo delle Reti Neurali Artificiali," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2022(2), pages 41-61.
- Adriana Csikosova & Maria Janoskova & Katarina Culkova, 2020. "Application of Discriminant Analysis for Avoiding the Risk of Quarry Operation Failure," JRFM, MDPI, vol. 13(10), pages 1-14, September.
- Le, Hong Hanh & Viviani, Jean-Laurent, 2018.
"Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios,"
Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
- Hong Hanh Le & Jean-Laurent Viviani, 2018. "Predicting bank failure: An improvement by implementing machine learning approach on classical financial ratios," Post-Print halshs-01615106, HAL.
- Elena G. Shershneva, Min Zhou Hao, 2024. "Russian Banks Financial Stability Loss Diagnostic: Multidimensional Logit-Model Approach," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 23(2), pages 476-498.
- Tomasz Korol, 2019. "Dynamic Bankruptcy Prediction Models for European Enterprises," JRFM, MDPI, vol. 12(4), pages 1-15, December.
- Ilyes Abid & Rim Ayadi & Khaled Guesmi & Farid Mkaouar, 2022. "A new approach to deal with variable selection in neural networks: an application to bankruptcy prediction," Annals of Operations Research, Springer, vol. 313(2), pages 605-623, June.
- Jiaming Liu & Chengzhang Li & Peng Ouyang & Jiajia Liu & Chong Wu, 2023. "Interpreting the prediction results of the tree‐based gradient boosting models for financial distress prediction with an explainable machine learning approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(5), pages 1112-1137, August.
- Zhiyong Li & Chen Feng & Ying Tang, 2022. "Bank efficiency and failure prediction: a nonparametric and dynamic model based on data envelopment analysis," Annals of Operations Research, Springer, vol. 315(1), pages 279-315, August.
- Douglas, Ella & Lont, David & Scott, Tom, 2014. "Finance company failure in New Zealand during 2006–2009: Predictable failures?," Journal of Contemporary Accounting and Economics, Elsevier, vol. 10(3), pages 277-295.
- Mirjana Jemović & Srđan Marinković, 2021. "Determinants of financial crises—An early warning system based on panel logit regression," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 103-117, January.
- C. Quek & R. W. Zhou & C. H. Lee, 2009. "A novel fuzzy neural approach to data reconstruction and failure prediction," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 16(1‐2), pages 165-187, January.
- Citterio, Alberto, 2024. "Bank failure prediction models: Review and outlook," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).
- Francesco Ciampi & Valentina Cillo & Fabio Fiano, 2020. "Combining Kohonen maps and prior payment behavior for small enterprise default prediction," Small Business Economics, Springer, vol. 54(4), pages 1007-1039, April.
- Fazelina Sahul Hamid, 2013. "The Effect of Reliance on International Funding on Banking Fragility: Evidence from East Asia," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 7(1), pages 29-60, February.
- Asyrofa Rahmi & Hung-Yuan Lu & Deron Liang & Dinda Novitasari & Chih-Fong Tsai, 2023. "Role of Comprehensive Income in Predicting Bankruptcy," Computational Economics, Springer;Society for Computational Economics, vol. 62(2), pages 689-720, August.
- Leila Bateni & Farshid Asghari, 2020. "Bankruptcy Prediction Using Logit and Genetic Algorithm Models: A Comparative Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 335-348, January.
- Antonio Davila & George Foster & Xiaobin He & Carlos Shimizu, 2015. "The rise and fall of startups: Creation and destruction of revenue and jobs by young companies," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 6-35, February.
- Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
- Pavol Durana & Lucia Michalkova & Andrej Privara & Josef Marousek & Milos Tumpach, 2021. "Does the life cycle affect earnings management and bankruptcy?," Oeconomia Copernicana, Institute of Economic Research, vol. 12(2), pages 425-461, June.
More about this item
Keywords
Abasgholipour; M. (2010). Factors Affecting the Improvement of the Performance of Banks. Banking and Economy Quarterly; 106; 24-35. Abounouri; A.; Erfani; A. (2008). Markov Switching Algorithm and Predicting the Probability of Incidence of Liquidity Rati;All these keywords.
JEL classification:
- G20 - Financial Economics - - Financial Institutions and Services - - - General
- C80 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - General
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mbr:jmonec:v:14:y:2019:i:2:p:177-204. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: M. E. (email available below). General contact details of provider: https://edirc.repec.org/data/mbcbiir.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.