My bibliography
Save this item
Text-based crude oil price forecasting: A deep learning approach
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chundakkadan, Radeef & Nedumparambil, Elizabeth, 2022. "In search of COVID-19 and stock market behavior," Global Finance Journal, Elsevier, vol. 54(C).
- Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
- Shi, Chunpei & Wei, Yu & Li, Xiafei & Liu, Yuntong, 2023. "Combination forecasts of China's oil futures returns based on multiple uncertainties and their connectedness with oil," Energy Economics, Elsevier, vol. 126(C).
- Wang, Yudong & Hao, Xianfeng, 2022. "Forecasting the real prices of crude oil: A robust weighted least squares approach," Energy Economics, Elsevier, vol. 116(C).
- Zhang, Yaojie & Wang, Yudong, 2023. "Forecasting crude oil futures market returns: A principal component analysis combination approach," International Journal of Forecasting, Elsevier, vol. 39(2), pages 659-673.
- Hongcheng Ding & Xuanze Zhao & Zixiao Jiang & Shamsul Nahar Abdullah & Deshinta Arrova Dewi, 2024. "EUR-USD Exchange Rate Forecasting Based on Information Fusion with Large Language Models and Deep Learning Methods," Papers 2408.13214, arXiv.org.
- Wang, Zhe & Teng, Yin-Pei & Wu, Shuzhao & Liu, Yuxiang & Liu, Xianchang, 2023. "Geopolitical risk, financial system and natural resources extraction: Evidence from China," Resources Policy, Elsevier, vol. 82(C).
- Yuze Li & Shangrong Jiang & Yunjie Wei & Shouyang Wang, 2021. "Take Bitcoin into your portfolio: a novel ensemble portfolio optimization framework for broad commodity assets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-26, December.
- ArunKumar, K.E. & Kalaga, Dinesh V. & Kumar, Ch. Mohan Sai & Kawaji, Masahiro & Brenza, Timothy M, 2021. "Forecasting of COVID-19 using deep layer Recurrent Neural Networks (RNNs) with Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTM) cells," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
- Zhang, Yaojie & Wahab, M.I.M. & Wang, Yudong, 2023. "Forecasting crude oil market volatility using variable selection and common factor," International Journal of Forecasting, Elsevier, vol. 39(1), pages 486-502.
- Cheng, Xian & Wu, Peng & Liao, Stephen Shaoyi & Wang, Xuelian, 2023. "An integrated model for crude oil forecasting: Causality assessment and technical efficiency," Energy Economics, Elsevier, vol. 117(C).
- Parisa Foroutan & Salim Lahmiri, 2024. "Deep learning systems for forecasting the prices of crude oil and precious metals," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-40, December.
- Sen, Abhibasu & Dutta Choudhury, Karabi, 2024. "Forecasting the Crude Oil prices for last four decades using deep learning approach," Resources Policy, Elsevier, vol. 88(C).
- Jiang, Zhe & Zhang, Lin & Zhang, Lingling & Wen, Bo, 2022. "Investor sentiment and machine learning: Predicting the price of China's crude oil futures market," Energy, Elsevier, vol. 247(C).
- Wu, Binrong & Wang, Lin & Wang, Sirui & Zeng, Yu-Rong, 2021. "Forecasting the U.S. oil markets based on social media information during the COVID-19 pandemic," Energy, Elsevier, vol. 226(C).
- Xingrui Jiao & Yuping Song & Yang Kong & Xiaolong Tang, 2022. "Volatility forecasting for crude oil based on text information and deep learning PSO‐LSTM model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 933-944, August.
- Zhao, Lu-Tao & Xing, Yue-Yue & Zhao, Qiu-Rong & Chen, Xue-Hui, 2023. "Dynamic impacts of online investor sentiment on international crude oil prices," Resources Policy, Elsevier, vol. 82(C).
- Kertlly de Medeiros, Rennan & da Nóbrega Besarria, Cássio & Pitta de Jesus, Diego & Phillipe de Albuquerquemello, Vinicius, 2022. "Forecasting oil prices: New approaches," Energy, Elsevier, vol. 238(PC).
- Ye, Jing & Xue, Minggao, 2021. "Influences of sentiment from news articles on EU carbon prices," Energy Economics, Elsevier, vol. 101(C).
- Abdollahi, Hooman & Junttila, Juha-Pekka & Lehkonen, Heikki, 2024. "Clustering asset markets based on volatility connectedness to political news," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 93(C).
- Abdollahi, Hooman & Fjesme, Sturla L. & Sirnes, Espen, 2024. "Measuring market volatility connectedness to media sentiment," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
- Zhao, Geya & Xue, Minggao & Cheng, Li, 2023. "A new hybrid model for multi-step WTI futures price forecasting based on self-attention mechanism and spatial–temporal graph neural network," Resources Policy, Elsevier, vol. 85(PB).
- Jiangwei Liu & Xiaohong Huang, 2021. "Forecasting Crude Oil Price Using Event Extraction," Papers 2111.09111, arXiv.org.
- Guo, Jingjun & Zhao, Zhengling & Sun, Jingyun & Sun, Shaolong, 2022. "Multi-perspective crude oil price forecasting with a new decomposition-ensemble framework," Resources Policy, Elsevier, vol. 77(C).
- Zhang, Fang & Xia, Yan, 2022. "Carbon price prediction models based on online news information analytics," Finance Research Letters, Elsevier, vol. 46(PA).
- Nchofoung, Tii N., 2024. "Oil price shocks and energy transition in Africa," Energy Policy, Elsevier, vol. 184(C).
- Yu, Dan & Chen, Chuang & Wang, Yudong & Zhang, Yaojie, 2023. "Hedging pressure momentum and the predictability of oil futures returns," Economic Modelling, Elsevier, vol. 121(C).
- Indranil SenGupta & William Nganje & Erik Hanson, 2021.
"Refinements of Barndorff-Nielsen and Shephard Model: An Analysis of Crude Oil Price with Machine Learning,"
Annals of Data Science, Springer, vol. 8(1), pages 39-55, March.
- Indranil SenGupta & William Nganje & Erik Hanson, 2019. "Refinements of Barndorff-Nielsen and Shephard model: an analysis of crude oil price with machine learning," Papers 1911.13300, arXiv.org, revised Mar 2020.
- Kaijian He & Qian Yang & Lei Ji & Jingcheng Pan & Yingchao Zou, 2023. "Financial Time Series Forecasting with the Deep Learning Ensemble Model," Mathematics, MDPI, vol. 11(4), pages 1-15, February.
- Aamir Javed & Agnese Rapposelli & Mohsin Shah & Asif Javed, 2023. "Nexus between Energy Consumption, Foreign Direct Investment, Oil Prices, Economic Growth, and Carbon Emissions in Italy: Fresh Evidence from Autoregressive Distributed Lag and Wavelet Coherence Approa," Energies, MDPI, vol. 16(16), pages 1-23, August.
- Bai, Yun & Li, Xixi & Yu, Hao & Jia, Suling, 2022. "Crude oil price forecasting incorporating news text," International Journal of Forecasting, Elsevier, vol. 38(1), pages 367-383.
- Tiwari, Aviral Kumar & Sharma, Gagan Deep & Rao, Amar & Hossain, Mohammad Razib & Dev, Dhairya, 2024. "Unraveling the crystal ball: Machine learning models for crude oil and natural gas volatility forecasting," Energy Economics, Elsevier, vol. 134(C).
- Gong, Xingyue & Jia, Guozhu, 2023. "Impactful messaging: Elite sentiment in Chinese new energy vehicle vs machine learning perspective," Finance Research Letters, Elsevier, vol. 57(C).
- Melike Bildirici & Nilgun Guler Bayazit & Yasemen Ucan, 2020. "Analyzing Crude Oil Prices under the Impact of COVID-19 by Using LSTARGARCHLSTM," Energies, MDPI, vol. 13(11), pages 1-18, June.
- Marcus Vinicius Santos & Fernando Morgado-Dias & Thiago C. Silva, 2023. "Oil Sector and Sentiment Analysis—A Review," Energies, MDPI, vol. 16(12), pages 1-29, June.
- Özgür Ömer Ersin & Melike Bildirici, 2023. "Financial Volatility Modeling with the GARCH-MIDAS-LSTM Approach: The Effects of Economic Expectations, Geopolitical Risks and Industrial Production during COVID-19," Mathematics, MDPI, vol. 11(8), pages 1-26, April.
- Li, Ranran & Hu, Yucai & Heng, Jiani & Chen, Xueli, 2021. "A novel multiscale forecasting model for crude oil price time series," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
- Jonathan Leslie, 2023. "?Seeing? the Future: Improving Macroeconomic Forecasts with Spatial Data and Recurrent Convolutional Neural Networks," CAEPR Working Papers 2023-003 Classification-C, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
- Weiss, Daniel & Nemeczek, Fabian, 2021. "A text-based monitoring tool for the legitimacy and guidance of technological innovation systems," Technology in Society, Elsevier, vol. 66(C).
- Zhao, Zhengling & Sun, Shaolong & Sun, Jingyun & Wang, Shouyang, 2024. "A novel hybrid model with two-layer multivariate decomposition for crude oil price forecasting," Energy, Elsevier, vol. 288(C).
- Zhao, Yuan & Zhang, Weiguo & Gong, Xue & Wang, Chao, 2021. "A novel method for online real-time forecasting of crude oil price," Applied Energy, Elsevier, vol. 303(C).
- Li, Yuze & Jiang, Shangrong & Li, Xuerong & Wang, Shouyang, 2021. "The role of news sentiment in oil futures returns and volatility forecasting: Data-decomposition based deep learning approach," Energy Economics, Elsevier, vol. 95(C).
- Guo, Yangli & Li, Pan & Wu, Hanlin, 2023. "Jumps in the Chinese crude oil futures volatility forecasting: New evidence," Energy Economics, Elsevier, vol. 126(C).
- Jiang, He & Hu, Weiqiang & Xiao, Ling & Dong, Yao, 2022. "A decomposition ensemble based deep learning approach for crude oil price forecasting," Resources Policy, Elsevier, vol. 78(C).
- Urolagin, Siddhaling & Sharma, Nikhil & Datta, Tapan Kumar, 2021. "A combined architecture of multivariate LSTM with Mahalanobis and Z-Score transformations for oil price forecasting," Energy, Elsevier, vol. 231(C).
- Lucey, Brian & Ren, Boru, 2021. "Does news tone help forecast oil?," Economic Modelling, Elsevier, vol. 104(C).
- Karasu, Seçkin & Altan, Aytaç & Bekiros, Stelios & Ahmad, Wasim, 2020. "A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series," Energy, Elsevier, vol. 212(C).
- Yan, Wan-Lin, 2023. "Stock index futures price prediction using feature selection and deep learning," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
- Wei Liu & Yoshihisa Suzuki & Shuyi Du, 2024. "Forecasting the Stock Price of Listed Innovative SMEs Using Machine Learning Methods Based on Bayesian optimization: Evidence from China," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 2035-2068, May.
- Guan, Keqin & Gong, Xu, 2023. "A new hybrid deep learning model for monthly oil prices forecasting," Energy Economics, Elsevier, vol. 128(C).
- Tii N. Nchofoung, 2023.
"Oil price shocks and energy transition in Africa,"
Working Papers
23/064, European Xtramile Centre of African Studies (EXCAS).
- Tii N. Nchofoung, 2023. "Oil price shocks and energy transition in Africa," Working Papers of the African Governance and Development Institute. 23/064, African Governance and Development Institute..
- Zhao, Lu-Tao & Wang, Dai-Song & Ren, Zhong-Yuan, 2024. "The impact of joint events on oil price volatility: Evidence from a dynamic graphical news analysis model," Economic Modelling, Elsevier, vol. 130(C).
- Pan, Zhiyuan & Fu, Ziqian & Wang, Yudong & Dong, Qingma, 2024. "Exploiting the sentiments: A simple approach for improving cross hedging effectiveness," Energy Economics, Elsevier, vol. 134(C).
- Zhang, Jialin & Shi, Shaodong, 2023. "Extraction of natural resources and geopolitical risk revisited: A novel perspective of research and development with financial development," Resources Policy, Elsevier, vol. 85(PA).
- Mimoun Benali & Lahboub Karima, 2024. "Modelling Stock Prices of Energy Sector using Supervised Machine Learning Techniques," International Journal of Energy Economics and Policy, Econjournals, vol. 14(2), pages 594-602, March.
- Niu, Zibo & Liu, Yuanyuan & Gao, Wang & Zhang, Hongwei, 2021. "The role of coronavirus news in the volatility forecasting of crude oil futures markets: Evidence from China," Resources Policy, Elsevier, vol. 73(C).
- Hao, Jun & Feng, Qianqian & Yuan, Jiaxin & Sun, Xiaolei & Li, Jianping, 2022. "A dynamic ensemble learning with multi-objective optimization for oil prices prediction," Resources Policy, Elsevier, vol. 79(C).
- Lin Chen & Stephanie Houle, 2023. "Turning Words into Numbers: Measuring News Media Coverage of Shortages," Discussion Papers 2023-8, Bank of Canada.