IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v376y2024ipbs0306261924016441.html
   My bibliography  Save this article

A novel link prediction model for interval-valued crude oil prices based on complex network and multi-source information

Author

Listed:
  • Liu, Jinpei
  • Zhao, Xiaoman
  • Luo, Rui
  • Tao, Zhifu

Abstract

Accurate crude oil price forecasting is crucial for maintaining energy economy stability and enhancing investment and operational decision-making. Nowadays, the link prediction model for crude oil prices based on a complex network model has become an emerging and promising approach. However, existing link prediction methods are unable to extract complex information about interval-valued crude oil prices, and fail to consider the impact of multi-source information. Therefore, this paper proposes the link prediction model for interval-valued crude oil prices using complex network and multi-source information, which converts crude oil price interval series into complex networks. Through link prediction, it takes into account both the impact of past interval-crude oil prices on future interval time series and the interference of external real-time information on interval-valued prices. First, news headlines and geopolitical risk indices related to crude oil prices are captured, and search index data and news sentiment scores associated with interval data are analyzed. Subsequently, the interval sequence data and related influencing factors are decomposed and reconstructed respectively. The reconstructed interval center and radius sequence are then converted into a directed network, and node similarity in the network is calculated to generate similar nodes of the interval subsequence as feature values. Finally, multiple machine learning models are employed to acquire the optimal weighted combination prediction with interval prediction values. According to the experimental data, this approach outperforms other benchmark methods in terms of prediction accuracy.

Suggested Citation

  • Liu, Jinpei & Zhao, Xiaoman & Luo, Rui & Tao, Zhifu, 2024. "A novel link prediction model for interval-valued crude oil prices based on complex network and multi-source information," Applied Energy, Elsevier, vol. 376(PB).
  • Handle: RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924016441
    DOI: 10.1016/j.apenergy.2024.124261
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924016441
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124261?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ling-Ling Li & Shi-Yu Wen & Ming-Lang Tseng & Anthony S. F. Chiu, 2020. "Photovoltaic array prediction on short-term output power method in Centralized power generation system," Annals of Operations Research, Springer, vol. 290(1), pages 243-263, July.
    2. Christiane Baumeister & Lutz Kilian, 2016. "Forty Years of Oil Price Fluctuations: Why the Price of Oil May Still Surprise Us," Journal of Economic Perspectives, American Economic Association, vol. 30(1), pages 139-160, Winter.
    3. Yang, Kun & Cheng, Zishu & Li, Mingchen & Wang, Shouyang & Wei, Yunjie, 2024. "Fortify the investment performance of crude oil market by integrating sentiment analysis and an interval-based trading strategy," Applied Energy, Elsevier, vol. 353(PA).
    4. Li, Xuerong & Shang, Wei & Wang, Shouyang, 2019. "Text-based crude oil price forecasting: A deep learning approach," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1548-1560.
    5. Sun, Jingyun & Zhao, Panpan & Sun, Shaolong, 2022. "A new secondary decomposition-reconstruction-ensemble approach for crude oil price forecasting," Resources Policy, Elsevier, vol. 77(C).
    6. Wei Yang & Ai Han & Yongmiao Hong & Shouyang Wang, 2016. "Analysis of crisis impact on crude oil prices: a new approach with interval time series modelling," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1917-1928, December.
    7. Chiroma, Haruna & Abdulkareem, Sameem & Herawan, Tutut, 2015. "Evolutionary Neural Network model for West Texas Intermediate crude oil price prediction," Applied Energy, Elsevier, vol. 142(C), pages 266-273.
    8. Wang, Xuerui & Li, Xiangyu & Li, Shaoting, 2022. "Point and interval forecasting system for crude oil price based on complete ensemble extreme-point symmetric mode decomposition with adaptive noise and intelligent optimization algorithm," Applied Energy, Elsevier, vol. 328(C).
    9. Zheng, Li & Sun, Yuying & Wang, Shouyang, 2024. "A novel interval-based hybrid framework for crude oil price forecasting and trading," Energy Economics, Elsevier, vol. 130(C).
    10. Li, Jieyi & Qian, Shuangyue & Li, Ling & Guo, Yuanxuan & Wu, Jun & Tang, Ling, 2024. "A novel secondary decomposition method for forecasting crude oil price with twitter sentiment," Energy, Elsevier, vol. 290(C).
    11. Wang, Piao & Tao, Zhifu & Liu, Jinpei & Chen, Huayou, 2023. "Improving the forecasting accuracy of interval-valued carbon price from a novel multi-scale framework with outliers detection: An improved interval-valued time series analysis mode," Energy Economics, Elsevier, vol. 118(C).
    12. Sen, Abhibasu & Dutta Choudhury, Karabi, 2024. "Forecasting the Crude Oil prices for last four decades using deep learning approach," Resources Policy, Elsevier, vol. 88(C).
    13. Charfeddine, Lanouar, 2016. "Breaks or long range dependence in the energy futures volatility: Out-of-sample forecasting and VaR analysis," Economic Modelling, Elsevier, vol. 53(C), pages 354-374.
    14. Yin, Xin-An & Yang, Xiao-Hua & Yang, Zhi-Feng, 2009. "Using the R/S method to determine the periodicity of time series," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 731-745.
    15. He, Zhifang, 2020. "Dynamic impacts of crude oil price on Chinese investor sentiment: Nonlinear causality and time-varying effect," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 131-153.
    16. Wu, Binrong & Wang, Lin & Wang, Sirui & Zeng, Yu-Rong, 2021. "Forecasting the U.S. oil markets based on social media information during the COVID-19 pandemic," Energy, Elsevier, vol. 226(C).
    17. Mei, Dexiang & Ma, Feng & Liao, Yin & Wang, Lu, 2020. "Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models," Energy Economics, Elsevier, vol. 86(C).
    18. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    19. Liu, Tianhong & Qi, Shengli & Qiao, Xianzhu & Liu, Sixing, 2024. "A hybrid short-term wind power point-interval prediction model based on combination of improved preprocessing methods and entropy weighted GRU quantile regression network," Energy, Elsevier, vol. 288(C).
    20. Wang, Kang & Wang, Jianzhou & Zeng, Bo & Lu, Haiyan, 2022. "An integrated power load point-interval forecasting system based on information entropy and multi-objective optimization," Applied Energy, Elsevier, vol. 314(C).
    21. Vitor G. Azevedo & Lucila M.S. Campos, 2016. "Combination of forecasts for the price of crude oil on the spot market," International Journal of Production Research, Taylor & Francis Journals, vol. 54(17), pages 5219-5235, September.
    22. Jeremy Ginsberg & Matthew H. Mohebbi & Rajan S. Patel & Lynnette Brammer & Mark S. Smolinski & Larry Brilliant, 2009. "Detecting influenza epidemics using search engine query data," Nature, Nature, vol. 457(7232), pages 1012-1014, February.
    23. Tang, Ling & Zhang, Chengyuan & Li, Ling & Wang, Shouyang, 2020. "A multi-scale method for forecasting oil price with multi-factor search engine data," Applied Energy, Elsevier, vol. 257(C).
    24. Rui Luo & Jinpei Liu & Piao Wang & Zhifu Tao & Huayou Chen, 2024. "A multisource data‐driven combined forecasting model based on internet search keyword screening method for interval soybean futures price," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 366-390, March.
    25. Zhang, Lihong & Wang, Jun & Wang, Bin, 2020. "Energy market prediction with novel long short-term memory network: Case study of energy futures index volatility," Energy, Elsevier, vol. 211(C).
    26. Bai, Yun & Li, Xixi & Yu, Hao & Jia, Suling, 2022. "Crude oil price forecasting incorporating news text," International Journal of Forecasting, Elsevier, vol. 38(1), pages 367-383.
    27. Xu, Hua & Wang, Minggang & Jiang, Shumin & Yang, Weiguo, 2020. "Carbon price forecasting with complex network and extreme learning machine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    28. Abdollahi, Hooman & Ebrahimi, Seyed Babak, 2020. "A new hybrid model for forecasting Brent crude oil price," Energy, Elsevier, vol. 200(C).
    29. Sun, Shaolong & Sun, Yuying & Wang, Shouyang & Wei, Yunjie, 2018. "Interval decomposition ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 76(C), pages 274-287.
    30. Wang, Minggang & Tian, Lixin & Zhou, Peng, 2018. "A novel approach for oil price forecasting based on data fluctuation network," Energy Economics, Elsevier, vol. 71(C), pages 201-212.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Zhengling & Sun, Shaolong & Sun, Jingyun & Wang, Shouyang, 2024. "A novel hybrid model with two-layer multivariate decomposition for crude oil price forecasting," Energy, Elsevier, vol. 288(C).
    2. Hao, Jun & Feng, Qianqian & Yuan, Jiaxin & Sun, Xiaolei & Li, Jianping, 2022. "A dynamic ensemble learning with multi-objective optimization for oil prices prediction," Resources Policy, Elsevier, vol. 79(C).
    3. Zhao, Geya & Xue, Minggao & Cheng, Li, 2023. "A new hybrid model for multi-step WTI futures price forecasting based on self-attention mechanism and spatial–temporal graph neural network," Resources Policy, Elsevier, vol. 85(PB).
    4. Zheng, Li & Sun, Yuying & Wang, Shouyang, 2024. "A novel interval-based hybrid framework for crude oil price forecasting and trading," Energy Economics, Elsevier, vol. 130(C).
    5. Zhao, Yuan & Zhang, Weiguo & Gong, Xue & Wang, Chao, 2021. "A novel method for online real-time forecasting of crude oil price," Applied Energy, Elsevier, vol. 303(C).
    6. Sun, Jingyun & Zhao, Panpan & Sun, Shaolong, 2022. "A new secondary decomposition-reconstruction-ensemble approach for crude oil price forecasting," Resources Policy, Elsevier, vol. 77(C).
    7. Rui Luo & Jinpei Liu & Piao Wang & Zhifu Tao & Huayou Chen, 2024. "A multisource data‐driven combined forecasting model based on internet search keyword screening method for interval soybean futures price," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 366-390, March.
    8. Xiao, Jihong & Wen, Fenghua & He, Zhifang, 2023. "Impact of geopolitical risks on investor attention and speculation in the oil market: Evidence from nonlinear and time-varying analysis," Energy, Elsevier, vol. 267(C).
    9. Xu, Kunliang & Niu, Hongli, 2023. "Denoising or distortion: Does decomposition-reconstruction modeling paradigm provide a reliable prediction for crude oil price time series?," Energy Economics, Elsevier, vol. 128(C).
    10. Li, Jieyi & Qian, Shuangyue & Li, Ling & Guo, Yuanxuan & Wu, Jun & Tang, Ling, 2024. "A novel secondary decomposition method for forecasting crude oil price with twitter sentiment," Energy, Elsevier, vol. 290(C).
    11. Jiang, He & Hu, Weiqiang & Xiao, Ling & Dong, Yao, 2022. "A decomposition ensemble based deep learning approach for crude oil price forecasting," Resources Policy, Elsevier, vol. 78(C).
    12. Zhu, Mengrui & Xu, Hua & Wang, Minggang & Tian, Lixin, 2024. "Carbon price interval prediction method based on probability density recurrence network and interval multi-layer perceptron," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    13. Pan, Zhiyuan & Huang, Xiao & Liu, Li & Huang, Juan, 2023. "Geopolitical uncertainty and crude oil volatility: Evidence from oil-importing and oil-exporting countries," Finance Research Letters, Elsevier, vol. 52(C).
    14. Jesús Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2024. "Predicting carbon and oil price returns using hybrid models based on machine and deep learning," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
    15. Zhao, Yang & Li, Jianping & Yu, Lean, 2017. "A deep learning ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 66(C), pages 9-16.
    16. Parisa Foroutan & Salim Lahmiri, 2024. "Deep learning systems for forecasting the prices of crude oil and precious metals," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-40, December.
    17. Li, Jinchao & Zhu, Shaowen & Wu, Qianqian, 2019. "Monthly crude oil spot price forecasting using variational mode decomposition," Energy Economics, Elsevier, vol. 83(C), pages 240-253.
    18. Kertlly de Medeiros, Rennan & da Nóbrega Besarria, Cássio & Pitta de Jesus, Diego & Phillipe de Albuquerquemello, Vinicius, 2022. "Forecasting oil prices: New approaches," Energy, Elsevier, vol. 238(PC).
    19. Niu, Hongli & Xu, Kunliang & Liu, Cheng, 2021. "A decomposition-ensemble model with regrouping method and attention-based gated recurrent unit network for energy price prediction," Energy, Elsevier, vol. 231(C).
    20. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924016441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.