IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v64y2023ics1062940822002029.html
   My bibliography  Save this article

Stock index futures price prediction using feature selection and deep learning

Author

Listed:
  • Yan, Wan-Lin

Abstract

Stock index futures allows stock investors to manage different kinds of risk. This paper combines the AdaBoost feature selection and deep learning model for predicting stock index futures prices. In particular, a hybrid model is proposed in which the sklearn wrapped AdaBoost regressor is used for feature selection and the two-layer long short-term memory-based predictor is constructed. Performance metrics consistently show that the proposed model outperforms other popular prediction models such as random forest, multi-layer perception, gated recurrent unit, deep belief network and stacked denoising autoencoder.

Suggested Citation

  • Yan, Wan-Lin, 2023. "Stock index futures price prediction using feature selection and deep learning," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
  • Handle: RePEc:eee:ecofin:v:64:y:2023:i:c:s1062940822002029
    DOI: 10.1016/j.najef.2022.101867
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062940822002029
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.najef.2022.101867?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bingchun Liu & Chuanchuan Fu & Arlene Bielefield & Yan Quan Liu, 2017. "Forecasting of Chinese Primary Energy Consumption in 2021 with GRU Artificial Neural Network," Energies, MDPI, vol. 10(10), pages 1-15, September.
    2. Jian Yang & Zihui Yang & Yinggang Zhou, 2012. "Intraday price discovery and volatility transmission in stock index and stock index futures markets: Evidence from China," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 32(2), pages 99-121, February.
    3. Jing Chen & Yu‐Jane Liu & Lei Lu & Ya Tang, 2016. "Investor Attention and Macroeconomic News Announcements: Evidence from Stock Index Futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(3), pages 240-266, March.
    4. Balduíno César Mateus & Mateus Mendes & José Torres Farinha & Rui Assis & António Marques Cardoso, 2021. "Comparing LSTM and GRU Models to Predict the Condition of a Pulp Paper Press," Energies, MDPI, vol. 14(21), pages 1-21, October.
    5. Li, Xuerong & Shang, Wei & Wang, Shouyang, 2019. "Text-based crude oil price forecasting: A deep learning approach," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1548-1560.
    6. Ma, Chenyao & Yan, Sheng, 2022. "Deep learning in the Chinese stock market: The role of technical indicators," Finance Research Letters, Elsevier, vol. 49(C).
    7. U, JuHyok & Lu, PengYu & Kim, ChungSong & Ryu, UnSok & Pak, KyongSok, 2020. "A new LSTM based reversal point prediction method using upward/downward reversal point feature sets," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    8. Wang, Jian Qi & Du, Yu & Wang, Jing, 2020. "LSTM based long-term energy consumption prediction with periodicity," Energy, Elsevier, vol. 197(C).
    9. Zhou, Liyun & Huang, Jialiang, 2020. "Contagion of future-level sentiment in Chinese Agricultural Futures Markets," Pacific-Basin Finance Journal, Elsevier, vol. 61(C).
    10. Dai, Zhifeng & Zhu, Huan, 2021. "Indicator selection and stock return predictability," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    11. Ciner, Cetin, 2019. "Do industry returns predict the stock market? A reprise using the random forest," The Quarterly Review of Economics and Finance, Elsevier, vol. 72(C), pages 152-158.
    12. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    13. Wang, Hao & Yue, Mengqi & Zhao, Hua, 2015. "Cojumps in China's spot and stock index futures markets," Pacific-Basin Finance Journal, Elsevier, vol. 35(PB), pages 541-557.
    14. Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2018. "Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches †," Energies, MDPI, vol. 11(7), pages 1-20, June.
    15. Tanaka-Yamawaki, Mieko & Tokuoka, Seiji, 2007. "Adaptive use of technical indicators for the prediction of intra-day stock prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(1), pages 125-133.
    16. Svetlana Borovkova & Ioannis Tsiamas, 2019. "An ensemble of LSTM neural networks for high‐frequency stock market classification," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(6), pages 600-619, September.
    17. Sun, Bianxia & Gao, Yang, 2020. "Market liquidity and macro announcement around intraday jumps: Evidence from Chinese stock index futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    18. Ruoyang Chen & Bin Pan, 2016. "Chinese Stock Index Futures Price Fluctuation Analysis and Prediction Based on Complementary Ensemble Empirical Mode Decomposition," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-13, August.
    19. Mark J. Flannery & Aris A. Protopapadakis, 2002. "Macroeconomic Factors Do Influence Aggregate Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 15(3), pages 751-782.
    20. Liu, Guofang & Fang, Xi & Huang, Yuan & Zhao, Weidong, 2021. "Identifying the role of consumer and producer price index announcements in stock index futures price changes," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 87-101.
    21. Jaehyun Yoon, 2021. "Forecasting of Real GDP Growth Using Machine Learning Models: Gradient Boosting and Random Forest Approach," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 247-265, January.
    22. Lin, Boqiang & Su, Tong, 2021. "Do China's macro-financial factors determine the Shanghai crude oil futures market?," International Review of Financial Analysis, Elsevier, vol. 78(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun-Feel Yang & So-Won Choi & Eul-Bum Lee, 2023. "A Prediction Model for Spot LNG Prices Based on Machine Learning Algorithms to Reduce Fluctuation Risks in Purchasing Prices," Energies, MDPI, vol. 16(11), pages 1-39, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mst. Shapna Akter & Hossain Shahriar & Reaz Chowdhury & M. R. C. Mahdy, 2022. "Forecasting the Risk Factor of Frontier Markets: A Novel Stacking Ensemble of Neural Network Approach," Future Internet, MDPI, vol. 14(9), pages 1-23, August.
    2. Meng, Qinglong & Wei, Ying'an & Fan, Jingjing & Li, Yanbo & Zhao, Fan & Lei, Yu & Sun, Hang & Jiang, Le & Yu, Lingli, 2024. "Peak regulation strategies for ground source heat pump demand response of based on load forecasting: A case study of rural building in China," Renewable Energy, Elsevier, vol. 224(C).
    3. Wang, Yijun & Andreeva, Galina & Martin-Barragan, Belen, 2023. "Machine learning approaches to forecasting cryptocurrency volatility: Considering internal and external determinants," International Review of Financial Analysis, Elsevier, vol. 90(C).
    4. Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
    5. Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
    6. Firuz Kamalov & Linda Smail & Ikhlaas Gurrib, 2021. "Stock price forecast with deep learning," Papers 2103.14081, arXiv.org.
    7. Firuz Kamalov, 2019. "Forecasting significant stock price changes using neural networks," Papers 1912.08791, arXiv.org.
    8. Gil Cohen, 2022. "Artificial Intelligence in Trading the Financial Markets," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(1), pages 101-110.
    9. Damien Wallace & Petko S. Kalev & Guanhua Lian, 2019. "The evolution of price discovery in us equity and derivatives markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(9), pages 1122-1136, September.
    10. Chen, Wei & Zhang, Haoyu & Jia, Lifen, 2022. "A novel two-stage method for well-diversified portfolio construction based on stock return prediction using machine learning," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    11. Qingwen Li & Guangxi Yan & Chengming Yu, 2022. "A Novel Multi-Factor Three-Step Feature Selection and Deep Learning Framework for Regional GDP Prediction: Evidence from China," Sustainability, MDPI, vol. 14(8), pages 1-21, April.
    12. Jianyuan Zhong & Zhijian Xu & Saizhuo Wang & Xiangyu Wen & Jian Guo & Qiang Xu, 2024. "DSPO: An End-to-End Framework for Direct Sorted Portfolio Construction," Papers 2405.15833, arXiv.org.
    13. Ao Kong & Hongliang Zhu & Robert Azencott, 2019. "Predicting intraday jumps in stock prices using liquidity measures and technical indicators," Papers 1912.07165, arXiv.org.
    14. Zainudin, Ahmad Danial & Mohamad, Azhar, 2021. "Financial contagion in the futures markets amidst global geo-economic events," The Quarterly Review of Economics and Finance, Elsevier, vol. 81(C), pages 288-308.
    15. Yao, Haixiang & Xia, Shenghao & Liu, Hao, 2022. "Six-factor asset pricing and portfolio investment via deep learning: Evidence from Chinese stock market," Pacific-Basin Finance Journal, Elsevier, vol. 76(C).
    16. Stefan Mittnik & Nikolay Robinzonov & Klaus Wohlrabe, 2013. "The Micro Dynamics of Macro Announcements," CESifo Working Paper Series 4421, CESifo.
    17. Lepori, Gabriele M., 2015. "Investor mood and demand for stocks: Evidence from popular TV series finales," Journal of Economic Psychology, Elsevier, vol. 48(C), pages 33-47.
    18. Gu, Chen & Kurov, Alexander & Wolfe, Marketa Halova, 2018. "Relief Rallies after FOMC Announcements as a Resolution of Uncertainty," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 1-18.
    19. Elenev, Vadim & Law, Tzuo-Hann & Song, Dongho & Yaron, Amir, 2024. "Fearing the Fed: How wall street reads main street," Journal of Financial Economics, Elsevier, vol. 153(C).
    20. Xiaojie Xu, 2017. "The rolling causal structure between the Chinese stock index and futures," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(4), pages 491-509, November.

    More about this item

    Keywords

    Stock index futures price prediction; Long short-term memory; AdaBoost algorithm; Feature selection; Technical analysis;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:64:y:2023:i:c:s1062940822002029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.