Analyzing Crude Oil Prices under the Impact of COVID-19 by Using LSTARGARCHLSTM
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- David Bigman & David Goldfarb & Edna Schechtman, 1983. "Futures market efficiency and the time content of the information sets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 3(3), pages 321-334, September.
- Terasvirta, T & Anderson, H M, 1992. "Characterizing Nonlinearities in Business Cycles Using Smooth Transition Autoregressive Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages 119-136, Suppl. De.
- Donaldson, R. Glen & Kamstra, Mark, 1997. "An artificial neural network-GARCH model for international stock return volatility," Journal of Empirical Finance, Elsevier, vol. 4(1), pages 17-46, January.
- Gilles Dufrénot & Vêlayoudom Marimoutou & Anne Peguin-Feissolle, 2003. "LSTGARCH effects in stock returns : the case of U.S., U.K. and France," Post-Print halshs-00403739, HAL.
- Kapetanios, George & Shin, Yongcheol & Snell, Andy, 2003. "Testing for a unit root in the nonlinear STAR framework," Journal of Econometrics, Elsevier, vol. 112(2), pages 359-379, February.
- Aggarwal, Reena & Inclan, Carla & Leal, Ricardo, 1999. "Volatility in Emerging Stock Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(1), pages 33-55, March.
- Zhao, Yang & Li, Jianping & Yu, Lean, 2017. "A deep learning ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 66(C), pages 9-16.
- Lahmiri, Salim, 2017. "A study on chaos in crude oil markets before and after 2008 international financial crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 389-395.
- Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
- Amélie Charles, 2008. "Forecasting volatility with outliers in GARCH models," Post-Print hal-00765466, HAL.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Granger, Clive W. J. & Terasvirta, Timo, 1999.
"A simple nonlinear time series model with misleading linear properties,"
Economics Letters, Elsevier, vol. 62(2), pages 161-165, February.
- Granger, Clive W.J. & Teräsvirta, Timo, 1998. "A simple nonlinear time series model with misleading linear properties," SSE/EFI Working Paper Series in Economics and Finance 237, Stockholm School of Economics.
- Li, Xuerong & Shang, Wei & Wang, Shouyang, 2019. "Text-based crude oil price forecasting: A deep learning approach," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1548-1560.
- Akbar Komijani & Esmaeil Naderi & Nadiya Gandali Alikhani, 2014.
"A hybrid approach for forecasting of oil prices volatility,"
OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 38(3), pages 323-340, September.
- Komijani, Akbar & Naderi, Esmaeil & Gandali Alikhani, Nadiya, 2013. "A Hybrid Approach for Forecasting of Oil Prices Volatility," MPRA Paper 44654, University Library of Munich, Germany.
- Zhang, Xun & Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2009. "Estimating the impact of extreme events on crude oil price: An EMD-based event analysis method," Energy Economics, Elsevier, vol. 31(5), pages 768-778, September.
- Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2008. "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, Elsevier, vol. 30(5), pages 2623-2635, September.
- M. Angeles Carnero & Daniel Peña & Esther Ruiz, 2007. "Effects of outliers on the identification and estimation of GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(4), pages 471-497, July.
- Lee, Junsoo & Degennaro, Ramon P, 2000. "Smooth Transition ARCH Models: Estimation and Testing," Review of Quantitative Finance and Accounting, Springer, vol. 15(1), pages 5-20, July.
- Adrangi, Bahram & Chatrath, Arjun & Dhanda, Kanwalroop Kathy & Raffiee, Kambiz, 2001. "Chaos in oil prices? Evidence from futures markets," Energy Economics, Elsevier, vol. 23(4), pages 405-425, July.
- Charles, Amélie & Darné, Olivier, 2014.
"Large shocks in the volatility of the Dow Jones Industrial Average index: 1928–2013,"
Journal of Banking & Finance, Elsevier, vol. 43(C), pages 188-199.
- Amélie Charles & Olivier Darné, 2014. "Large shocks in the volatility of the Dow Jones Industrial Average index: 1928–2013," Post-Print hal-01122507, HAL.
- Hamid, Shaikh A. & Iqbal, Zahid, 2004. "Using neural networks for forecasting volatility of S&P 500 Index futures prices," Journal of Business Research, Elsevier, vol. 57(10), pages 1116-1125, October.
- F. Gonzalez Miranda & N. Burgess, 1997. "Modelling market volatilities: the neural network perspective," The European Journal of Finance, Taylor & Francis Journals, vol. 3(2), pages 137-157.
- repec:zbw:bofrdp:1995_009 is not listed on IDEAS
- White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
- Taiyong Li & Zhenda Hu & Yanchi Jia & Jiang Wu & Yingrui Zhou, 2018. "Forecasting Crude Oil Prices Using Ensemble Empirical Mode Decomposition and Sparse Bayesian Learning," Energies, MDPI, vol. 11(7), pages 1-23, July.
- Hsieh, David A, 1991. "Chaos and Nonlinear Dynamics: Application to Financial Markets," Journal of Finance, American Finance Association, vol. 46(5), pages 1839-1877, December.
- Saeed Moshiri & Faezeh Foroutan, 2006.
"Forecasting Nonlinear Crude Oil Futures Prices,"
The Energy Journal, , vol. 27(4), pages 81-96, October.
- Saeed Moshiri & Faezeh Foroutan, 2006. "Forecasting Nonlinear Crude Oil Futures Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 81-96.
- Ané, Thierry & Ureche-Rangau, Loredana & Gambet, Jean-Benoît & Bouverot, Julien, 2008. "Robust outlier detection for Asia-Pacific stock index returns," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 18(4), pages 326-343, October.
- Felix Chan & Michael McAleer, 2003.
"Estimating smooth transition autoregressive models with GARCH errors in the presence of extreme observations and outliers,"
Applied Financial Economics, Taylor & Francis Journals, vol. 13(8), pages 581-592.
- Felix Chan & Michael McAleer, 2001. "Estimating Smooth Transition Autoregressive Models with GARCH Errors in the Presence of Extreme Observations and Outliers," ISER Discussion Paper 0539, Institute of Social and Economic Research, Osaka University.
- Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
- Hsieh, David A., 1993. "Implications of Nonlinear Dynamics for Financial Risk Management," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(1), pages 41-64, March.
- Amélie Charles, 2008. "Forecasting volatility with outliers in GARCH models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(7), pages 551-565.
- Felix Chan & Michael McAleer, 2002. "Maximum likelihood estimation of STAR and STAR-GARCH models: theory and Monte Carlo evidence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 509-534.
- Franses, Ph.H.B.F. & Neele, J. & van Dijk, D.J.C., 1998. "Forecasting volatility with switching persistence GARCH models," Econometric Institute Research Papers EI 9819, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Melike Bildirici & Özgür Ömer Ersin, 2014. "Nonlinearity, Volatility and Fractional Integration in Daily Oil Prices: Smooth Transition Autoregressive ST-FI(AP)GARCH Models," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 108-135, October.
- Shian-Chang Huang & Cheng-Feng Wu, 2018. "Energy Commodity Price Forecasting with Deep Multiple Kernel Learning," Energies, MDPI, vol. 11(11), pages 1-16, November.
- T. Ane & L. Ureche-Rangau, 2006. "Stock market dynamics in a regime-switching asymmetric power GARCH model," Post-Print hal-00170841, HAL.
- Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Melike Bildirici & Nilgun Guler Bayazit & Yasemen Ucan, 2021. "Modelling Oil Price with Lie Algebras and Long Short-Term Memory Networks," Mathematics, MDPI, vol. 9(14), pages 1-10, July.
- Bildirici, Melike E. & Sonustun, Bahri, 2021. "Chaotic behavior in gold, silver, copper and bitcoin prices," Resources Policy, Elsevier, vol. 74(C).
- Gustavo Carvalho Santos & Flavio Barboza & Antônio Cláudio Paschoarelli Veiga & Mateus Ferreira Silva, 2021. "Forecasting Brazilian Ethanol Spot Prices Using LSTM," Energies, MDPI, vol. 14(23), pages 1-15, November.
- Marcus Vinicius Santos & Fernando Morgado-Dias & Thiago C. Silva, 2023. "Oil Sector and Sentiment Analysis—A Review," Energies, MDPI, vol. 16(12), pages 1-29, June.
- Mohamed CHIKHI & Claude DIEBOLT, 2022.
"Testing the weak form efficiency of the French ETF market with the LSTAR-ANLSTGARCH approach using a semiparametric estimation,"
Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 13, pages 228-253, June.
- Mohamed CHIKHI & Claude DIEBOLT, 2021. "Testing The Weak Form Efficiency Of The French Etf Market With Lstar-Anlstgarch Approach Using A Semiparametric Estimation," Working Papers of BETA 2021-36, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
- Mohamed Chikhi & Claude Diebolt, 2022. "Testing the weak form efficiency of the French ETF market with the LSTAR-ANLSTGARCH approach using a semiparametric estimation," Post-Print hal-03778331, HAL.
- Claude Diebolt & Mohamed Chikhi, 2021. "Testing The Weak Form Efficiency Of The French Etf Market With Lstar-Anlstgarch Approach Using A Semiparametric Estimation," Working Papers 09-21, Association Française de Cliométrie (AFC).
- Özgür Ömer Ersin & Melike Bildirici, 2023. "Financial Volatility Modeling with the GARCH-MIDAS-LSTM Approach: The Effects of Economic Expectations, Geopolitical Risks and Industrial Production during COVID-19," Mathematics, MDPI, vol. 11(8), pages 1-26, April.
- Deng, Ming, 2022. "China economic performance and natural resources commodity prices volatility: Evidence from China in COVID-19," Resources Policy, Elsevier, vol. 75(C).
- Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Heffron, Raphael J. & Körner, Marc-Fabian & Schöpf, Michael & Wagner, Jonathan & Weibelzahl, Martin, 2021. "The role of flexibility in the light of the COVID-19 pandemic and beyond: Contributing to a sustainable and resilient energy future in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
- Seyed Mehrzad Asaad Sajadi & Pouya Khodaee & Ehsan Hajizadeh & Sabri Farhadi & Sohaib Dastgoshade & Bo Du, 2022. "Deep Learning-Based Methods for Forecasting Brent Crude Oil Return Considering COVID-19 Pandemic Effect," Energies, MDPI, vol. 15(21), pages 1-23, October.
- Arfaoui, Nadia & Naeem, Muhammad Abubakr & Boubaker, Sabri & Mirza, Nawazish & Karim, Sitara, 2023.
"Interdependence of clean energy and green markets with cryptocurrencies,"
Energy Economics, Elsevier, vol. 120(C).
- N. Arfaoui & M.A. Naeem & S. Boubaker & N. Mirza & S. Karim, 2023. "Interdependence of Clean Energy and Green Markets with Cryptocurrencies," Post-Print hal-04435467, HAL.
- Zou, Mi & Han, Lin & Yang, Zhini, 2024. "Price discovery of the Chinese crude oil options and futures markets," Finance Research Letters, Elsevier, vol. 60(C).
- Lan, Jing & Wei, Yiming & Guo, Jie & Li, Qiuming & Liu, Zhen, 2023. "The effect of green finance on industrial pollution emissions: Evidence from China," Resources Policy, Elsevier, vol. 80(C).
- Cheng, WeiJin & Ming, Kai & Ullah, Mirzat, 2024. "Oil price volatility prediction using out-of-sample analysis – Prediction efficiency of individual models, combination methods, and machine learning based shrinkage methods," Energy, Elsevier, vol. 300(C).
- Kafieh, Rahele & Saeedizadeh, Narges & Arian, Roya & Amini, Zahra & Serej, Nasim Dadashi & Vaezi, Atefeh & Javanmard, Shaghayegh Haghjooy, 2020. "Isfahan and Covid-19: Deep spatiotemporal representation," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
- Vincenzo Candila & Denis Maximov & Alexey Mikhaylov & Nikita Moiseev & Tomonobu Senjyu & Nicole Tryndina, 2021. "On the Relationship between Oil and Exchange Rates of Oil-Exporting and Oil-Importing Countries: From the Great Recession Period to the COVID-19 Era," Energies, MDPI, vol. 14(23), pages 1-18, December.
- Sui, Bo & Chang, Chun-Ping & Jang, Chyi-Lu & Gong, Qiang, 2021. "Analyzing causality between epidemics and oil prices: Role of the stock market," Economic Analysis and Policy, Elsevier, vol. 70(C), pages 148-158.
- Yu, Yang & Guo, SongLin & Chang, XiaoChen, 2022. "Oil prices volatility and economic performance during COVID-19 and financial crises of 2007–2008," Resources Policy, Elsevier, vol. 75(C).
- Weijia Xu & Aihua Li & Lu Wei, 2022. "The Impact of COVID-19 on China’s Capital Market and Major Industry Sectors," Annals of Data Science, Springer, vol. 9(5), pages 983-1007, October.
- Ali, Muhammad Kashif & Zahoor, Muhammad Khurram & Saeed, Asif & Nosheen, Safia & Thanakijsombat, Thanarerk, 2023. "Institutional and country level determinants of vertical integration: New evidence from the oil and gas industry," Resources Policy, Elsevier, vol. 84(C).
- Marcin Fałdziński & Piotr Fiszeder & Witold Orzeszko, 2020. "Forecasting Volatility of Energy Commodities: Comparison of GARCH Models with Support Vector Regression," Energies, MDPI, vol. 14(1), pages 1-18, December.
- Krzysztof Echaust & Małgorzata Just, 2021. "Tail Dependence between Crude Oil Volatility Index and WTI Oil Price Movements during the COVID-19 Pandemic," Energies, MDPI, vol. 14(14), pages 1-21, July.
- Zhou, Wei & Gu, Qinen & Chen, Jin, 2021. "From volatility spillover to risk spread: An empirical study focuses on renewable energy markets," Renewable Energy, Elsevier, vol. 180(C), pages 329-342.
- Guo, Shanwen & Wang, Qibin & Hordofa, Tolassa Temesgen & Kaur, Prabjot & Nguyen, Ngoc Quynh & Maneengam, Apichit, 2022. "Does COVID-19 pandemic cause natural resources commodity prices volatility? Empirical evidence from China," Resources Policy, Elsevier, vol. 77(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
- Franses,Philip Hans & Dijk,Dick van, 2000.
"Non-Linear Time Series Models in Empirical Finance,"
Cambridge Books,
Cambridge University Press, number 9780521779654, January.
- Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, November.
- Behmiri, Niaz Bashiri & Manera, Matteo, 2015.
"The role of outliers and oil price shocks on volatility of metal prices,"
Resources Policy, Elsevier, vol. 46(P2), pages 139-150.
- Niaz Bashiri Behmiri & Matteo Manera, 2015. "The Role of Outliers and Oil Price Shocks on Volatility of Metal Prices," Working Papers 2015.77, Fondazione Eni Enrico Mattei.
- Behmiri, Niaz Bashiri & Manera, Matteo, 2015. "The Role of Outliers and Oil Price Shocks on Volatility of Metal Prices," Energy: Resources and Markets 208768, Fondazione Eni Enrico Mattei (FEEM).
- Melike Bildirici & Özgür Ömer Ersin, 2014. "Nonlinearity, Volatility and Fractional Integration in Daily Oil Prices: Smooth Transition Autoregressive ST-FI(AP)GARCH Models," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 108-135, October.
- Bildirici, Melike & Ersin, Özgür, 2012. "Nonlinear volatility models in economics: smooth transition and neural network augmented GARCH, APGARCH, FIGARCH and FIAPGARCH models," MPRA Paper 40330, University Library of Munich, Germany, revised May 2012.
- Mohamed CHIKHI & Claude DIEBOLT, 2022.
"Testing the weak form efficiency of the French ETF market with the LSTAR-ANLSTGARCH approach using a semiparametric estimation,"
Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 13, pages 228-253, June.
- Mohamed CHIKHI & Claude DIEBOLT, 2021. "Testing The Weak Form Efficiency Of The French Etf Market With Lstar-Anlstgarch Approach Using A Semiparametric Estimation," Working Papers of BETA 2021-36, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
- Mohamed Chikhi & Claude Diebolt, 2022. "Testing the weak form efficiency of the French ETF market with the LSTAR-ANLSTGARCH approach using a semiparametric estimation," Post-Print hal-03778331, HAL.
- Claude Diebolt & Mohamed Chikhi, 2021. "Testing The Weak Form Efficiency Of The French Etf Market With Lstar-Anlstgarch Approach Using A Semiparametric Estimation," Working Papers 09-21, Association Française de Cliométrie (AFC).
- Amélie Charles & Olivier Darné, 2021.
"Econometric history of the growth–volatility relationship in the USA: 1919–2017,"
Cliometrica, Journal of Historical Economics and Econometric History, Association Française de Cliométrie (AFC), vol. 15(2), pages 419-442, May.
- Amélie Charles & Olivier Darné, 0. "Econometric history of the growth–volatility relationship in the USA: 1919–2017," Cliometrica, Springer;Cliometric Society (Association Francaise de Cliométrie), vol. 0, pages 1-24.
- Amélie Charles & Olivier Darné, 2021. "Econometric history of the growth–volatility relationship in the USA: 1919–2017," Cliometrica, Springer;Cliometric Society (Association Francaise de Cliométrie), vol. 15(2), pages 419-442, May.
- Amélie Charles & Olivier Darné, 2021. "Econometric history of the growth–volatility relationship in the USA: 1919–2017," Post-Print hal-03186891, HAL.
- Charles, Amélie & Darné, Olivier, 2017.
"Forecasting crude-oil market volatility: Further evidence with jumps,"
Energy Economics, Elsevier, vol. 67(C), pages 508-519.
- Amélie Charles & Olivier Darné, 2017. "Forecasting crude-oil market volatility: Further evidence with jumps," Post-Print hal-01598141, HAL.
- Mohamed Chikhi & Claude Diebolt, 2019.
"Testing Nonlinearity through a Logistic Smooth Transition AR Model with Logistic Smooth Transition GARCH Errors,"
Working Papers of BETA
2019-06, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
- Mohamed Chikhi & Claude Diebolt, 2019. "Testing Nonlinearity through a Logistic Smooth Transition AR Model with Logistic Smooth Transition GARCH Errors," Working Papers 03-19, Association Française de Cliométrie (AFC).
- Marcos Álvarez-Díaz, 2020. "Is it possible to accurately forecast the evolution of Brent crude oil prices? An answer based on parametric and nonparametric forecasting methods," Empirical Economics, Springer, vol. 59(3), pages 1285-1305, September.
- Guo, Jingjun & Zhao, Zhengling & Sun, Jingyun & Sun, Shaolong, 2022. "Multi-perspective crude oil price forecasting with a new decomposition-ensemble framework," Resources Policy, Elsevier, vol. 77(C).
- Bierens, H.J. & Broersma, L., 1991. "The relation between unemployment and interest rate : some international evidence," Serie Research Memoranda 0112, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
- Grané, Aurea & Veiga, Helena, 2010. "Outliers in Garch models and the estimation of risk measures," DES - Working Papers. Statistics and Econometrics. WS ws100502, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Qi Zhang & Yi Hu & Jianbin Jiao & Shouyang Wang, 2022. "Exploring the Trend of Commodity Prices: A Review and Bibliometric Analysis," Sustainability, MDPI, vol. 14(15), pages 1-22, August.
- Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Hassink, W.H.J. & Broersma, L., 1993. "Labour demand and job-to-job movement : macro-consequences as a result from micro-economic behaviour," Serie Research Memoranda 0001, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
- González-Sánchez, Mariano, 2021. "Is there a relationship between the time scaling property of asset returns and the outliers? Evidence from international financial markets," Finance Research Letters, Elsevier, vol. 38(C).
- Kavussanos, Manolis G. & Dimitrakopoulos, Dimitris N., 2011. "Market risk model selection and medium-term risk with limited data: Application to ocean tanker freight markets," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 258-268.
- Wang, Minggang & Zhao, Longfeng & Du, Ruijin & Wang, Chao & Chen, Lin & Tian, Lixin & Eugene Stanley, H., 2018. "A novel hybrid method of forecasting crude oil prices using complex network science and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 220(C), pages 480-495.
- Jieye Qin & Christopher J. Green & Kavita Sirichand, 2019. "Determinants of Nikkei futures mispricing in international markets: Dividend clustering, currency risk, and transaction costs," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(10), pages 1269-1300, October.
More about this item
Keywords
crude oil prices; LSTM; LSTARGARCH; time series forecasting;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2980-:d:369469. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.