IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v67y2024ipbs1544612324009048.html
   My bibliography  Save this article

Predicting oil prices: A comparative analysis of machine learning and image recognition algorithms for trend prediction

Author

Listed:
  • Göncü, Ahmet
  • Kuzubaş, Tolga U.
  • Saltoğlu, Burak

Abstract

This paper investigates the effectiveness of machine learning algorithms, including logistic regression, artificial neural networks, support vector machines, gradient boosting algorithms (XGBoost, ExtraTrees), random forests, and convolutional neural network (CNN) for trend prediction of daily spot oil prices across horizons of 1 to 8 days. We utilize a comprehensive set of features, including technical indicators, financial data, and volatility measures, to predict trends in closing prices. Our results reveal that the CNN model significantly outperforms other algorithms. This superior performance likely stems from CNN’s ability to capture visual patterns in price movements, potentially mimicking how traders identify trends.

Suggested Citation

  • Göncü, Ahmet & Kuzubaş, Tolga U. & Saltoğlu, Burak, 2024. "Predicting oil prices: A comparative analysis of machine learning and image recognition algorithms for trend prediction," Finance Research Letters, Elsevier, vol. 67(PB).
  • Handle: RePEc:eee:finlet:v:67:y:2024:i:pb:s1544612324009048
    DOI: 10.1016/j.frl.2024.105874
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612324009048
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2024.105874?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Artificial neural networks; Support vector machines; Random forest; XGboost; Extreme trees classification; Convolutional neural networks (CNN);
    All these keywords.

    JEL classification:

    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:67:y:2024:i:pb:s1544612324009048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.