IDEAS home Printed from https://ideas.repec.org/r/eee/ijrema/v27y2010i4p293-307.html
   My bibliography  Save this item

Estimating aggregate consumer preferences from online product reviews

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Younghoon Lee & Sungzoon Cho & Jinhae Choi, 2021. "Determining user needs through abnormality detection and heterogeneous embedding of usage sequence," Electronic Commerce Research, Springer, vol. 21(2), pages 245-261, June.
  2. Oliveira, Gabriela D. & Roth, Richard & Dias, Luis C., 2019. "Diffusion of alternative fuel vehicles considering dynamic preferences," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 83-99.
  3. Roelen-Blasberg, Tobias & Habel, Johannes & Klarmann, Martin, 2023. "Automated inference of product attributes and their importance from user-generated content: Can we replace traditional market research?," International Journal of Research in Marketing, Elsevier, vol. 40(1), pages 164-188.
  4. Jang, Seongsoo & Chung, Jaihak, 2021. "What drives add-on sales in mobile games? The role of inter-price relationship and product popularity," Journal of Business Research, Elsevier, vol. 124(C), pages 59-68.
  5. Nan Jing & Tao Jiang & Juan Du & Vijayan Sugumaran, 2018. "Personalized recommendation based on customer preference mining and sentiment assessment from a Chinese e-commerce website," Electronic Commerce Research, Springer, vol. 18(1), pages 159-179, March.
  6. Anindya Ghose & Sang Pil Han, 2014. "Estimating Demand for Mobile Applications in the New Economy," Management Science, INFORMS, vol. 60(6), pages 1470-1488, June.
  7. Sigurdsson, Valdimar & Larsen, Nils Magne & Alemu, Mohammed Hussen & Gallogly, Joseph Karlton & Menon, R. G. Vishnu & Fagerstrøm, Asle, 2020. "Assisting sustainable food consumption: The effects of quality signals stemming from consumers and stores in online and physical grocery retailing," Journal of Business Research, Elsevier, vol. 112(C), pages 458-471.
  8. Teso, E. & Olmedilla, M. & Martínez-Torres, M.R. & Toral, S.L., 2018. "Application of text mining techniques to the analysis of discourse in eWOM communications from a gender perspective," Technological Forecasting and Social Change, Elsevier, vol. 129(C), pages 131-142.
  9. Koukova, Nevena T. & Wang, Rebecca Jen-Hui & Isaac, Mathew S., 2023. "“If you loved our product”: Do conditional review requests harm retailer loyalty?," Journal of Retailing, Elsevier, vol. 99(1), pages 85-101.
  10. Reinhold Decker, 2014. "Real-Time Analysis of Online Product Reviews by Means of Multi-Layer Feed-Forward Neural Networks," International Journal of Business and Social Research, LAR Center Press, vol. 4(11), pages 60-70, November.
  11. Theodoros Lappas & Gaurav Sabnis & Georgios Valkanas, 2016. "The Impact of Fake Reviews on Online Visibility: A Vulnerability Assessment of the Hotel Industry," Information Systems Research, INFORMS, vol. 27(4), pages 940-961, December.
  12. Moon, Sangkil & Kamakura, Wagner A., 2017. "A picture is worth a thousand words: Translating product reviews into a product positioning map," International Journal of Research in Marketing, Elsevier, vol. 34(1), pages 265-285.
  13. Soumya Mukhopadhyay & V Kumar & Amalesh Sharma & Tuck Siong Chung, 2022. "Impact of review narrativity on sales in a competitive environment," Production and Operations Management, Production and Operations Management Society, vol. 31(6), pages 2538-2556, June.
  14. Daniel Kaimann & Joe Cox, 2014. "The Interaction of Signals: A Fuzzy set Analysis of the Video Game Industry," Working Papers Dissertations 13, Paderborn University, Faculty of Business Administration and Economics.
  15. Tobias Reckmann, 2017. "Verwendung von Word of Mouth-Daten zur Identifikation von Asymmetrie im Wettbewerb: Eine textbasierte Analyse am Beispiel deutscher Automobilmarken [Identification of asymmetric competition by usin," Schmalenbach Journal of Business Research, Springer, vol. 69(2), pages 173-201, June.
  16. Junegak Joung & Kiwook Jung & Sanghyun Ko & Kwangsoo Kim, 2018. "Customer Complaints Analysis Using Text Mining and Outcome-Driven Innovation Method for Market-Oriented Product Development," Sustainability, MDPI, vol. 11(1), pages 1-14, December.
  17. Pei-Yu Chen & Yili Hong & Ying Liu, 2018. "The Value of Multidimensional Rating Systems: Evidence from a Natural Experiment and Randomized Experiments," Management Science, INFORMS, vol. 64(10), pages 4629-4647, October.
  18. Reinhold Decker, 2014. "Real-Time Analysis of Online Product Reviews by Means of Multi-Layer Feed-Forward Neural Networks," International Journal of Business and Social Research, MIR Center for Socio-Economic Research, vol. 4(11), pages 60-70, November.
  19. Rosa Maria Fanelli & Luca Romagnoli, 2020. "Customer Satisfaction with Farmhouse Facilities and Its Implications for the Promotion of Agritourism Resources in Italian Municipalities," Sustainability, MDPI, vol. 12(5), pages 1-21, February.
  20. Tingting Song & Jinghua Huang & Yong Tan & Yifan Yu, 2019. "Using User- and Marketer-Generated Content for Box Office Revenue Prediction: Differences Between Microblogging and Third-Party Platforms," Service Science, INFORMS, vol. 30(1), pages 191-203, March.
  21. Oded Netzer & Ronen Feldman & Jacob Goldenberg & Moshe Fresko, 2012. "Mine Your Own Business: Market-Structure Surveillance Through Text Mining," Marketing Science, INFORMS, vol. 31(3), pages 521-543, May.
  22. Shugang Li & Yuqi Zhang & Yueming Li & Zhaoxu Yu, 2021. "The user preference identification for product improvement based on online comment patch," Electronic Commerce Research, Springer, vol. 21(2), pages 423-444, June.
  23. Carlson, Keith & Kopalle, Praveen K. & Riddell, Allen & Rockmore, Daniel & Vana, Prasad, 2023. "Complementing human effort in online reviews: A deep learning approach to automatic content generation and review synthesis," International Journal of Research in Marketing, Elsevier, vol. 40(1), pages 54-74.
  24. Pauwels, Koen & Aksehirli, Zeynep & Lackman, Andrew, 2016. "Like the ad or the brand? Marketing stimulates different electronic word-of-mouth content to drive online and offline performance," International Journal of Research in Marketing, Elsevier, vol. 33(3), pages 639-655.
  25. Ransome Epie Bawack & Samuel Fosso Wamba & Kevin Daniel André Carillo & Shahriar Akter, 2022. "Artificial intelligence in E-Commerce: a bibliometric study and literature review," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(1), pages 297-338, March.
  26. Jorge Mejia & Shawn Mankad & Anandasivam Gopal, 2019. "A for Effort? Using the Crowd to Identify Moral Hazard in New York City Restaurant Hygiene Inspections," Information Systems Research, INFORMS, vol. 30(4), pages 1363-1386, December.
  27. Christoph Schneider & Markus Weinmann & Peter N.C. Mohr & Jan vom Brocke, 2021. "When the Stars Shine Too Bright: The Influence of Multidimensional Ratings on Online Consumer Ratings," Management Science, INFORMS, vol. 67(6), pages 3871-3898, June.
  28. Kick, Markus, 2015. "Social Media Research: A Narrative Review," EconStor Preprints 182506, ZBW - Leibniz Information Centre for Economics.
  29. Akshay Kangale & S. Krishna Kumar & Mohd Arshad Naeem & Mark Williams & M. K. Tiwari, 2016. "Mining consumer reviews to generate ratings of different product attributes while producing feature-based review-summary," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(13), pages 3272-3286, October.
  30. Xiao Liu & Param Vir Singh & Kannan Srinivasan, 2016. "A Structured Analysis of Unstructured Big Data by Leveraging Cloud Computing," Marketing Science, INFORMS, vol. 35(3), pages 363-388, May.
  31. Li Jie & Lan Qiaoling & Liu Lu & Yang Fang, 2018. "Integrated Online Consumer Preference Mining for Product Improvement with Online Reviews," Journal of Systems Science and Information, De Gruyter, vol. 7(1), pages 17-36, March.
  32. Moon, Sangkil & Jalali, Nima & Erevelles, Sunil, 2021. "Segmentation of both reviewers and businesses on social media," Journal of Retailing and Consumer Services, Elsevier, vol. 61(C).
  33. Apostolakis, George & van Dijk, Gert & Kraanen, Frido & Blomme, Robert J., 2018. "Examining socially responsible investment preferences: A discrete choice conjoint experiment," Journal of Behavioral and Experimental Finance, Elsevier, vol. 17(C), pages 83-96.
  34. Jang, Seongsoo & Chung, Jaihak & Rao, Vithala R., 2021. "The importance of functional and emotional content in online consumer reviews for product sales: Evidence from the mobile gaming market," Journal of Business Research, Elsevier, vol. 130(C), pages 583-593.
  35. Herbert Dawid & Reinhold Decker & Thomas Hermann & Hermann Jahnke & Wilhelm Klat & Rolf König & Christian Stummer, 2017. "Management science in the era of smart consumer products: challenges and research perspectives," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(1), pages 203-230, March.
  36. Bitty Balducci & Detelina Marinova, 2018. "Unstructured data in marketing," Journal of the Academy of Marketing Science, Springer, vol. 46(4), pages 557-590, July.
  37. Anindya Ghose & Panagiotis G. Ipeirotis & Beibei Li, 2012. "Designing Ranking Systems for Hotels on Travel Search Engines by Mining User-Generated and Crowdsourced Content," Marketing Science, INFORMS, vol. 31(3), pages 493-520, May.
  38. Yue Ma & Guoqing Chen & Qiang Wei, 2017. "Finding users preferences from large-scale online reviews for personalized recommendation," Electronic Commerce Research, Springer, vol. 17(1), pages 3-29, March.
  39. Gabriel JIPA, 2018. "Mobile Applications Buying Opinions Exploration using Topic Modeling," Expert Journal of Economics, Sprint Investify, vol. 6(2), pages 44-55.
  40. Yao Jiao & Yu Yang, 2019. "A product configuration approach based on online data," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2473-2487, August.
  41. Schindler, Diana & Decker, Reinhold, 2013. "Some remarks on the internal consistency of online consumer reviews," Australasian marketing journal, Elsevier, vol. 21(4), pages 221-227.
  42. Libai, Barak & Bart, Yakov & Gensler, Sonja & Hofacker, Charles F. & Kaplan, Andreas & Kötterheinrich, Kim & Kroll, Eike Benjamin, 2020. "Brave New World? On AI and the Management of Customer Relationships," Journal of Interactive Marketing, Elsevier, vol. 51(C), pages 44-56.
  43. Nikolay Archak & Anindya Ghose & Panagiotis G. Ipeirotis, 2011. "Deriving the Pricing Power of Product Features by Mining Consumer Reviews," Management Science, INFORMS, vol. 57(8), pages 1485-1509, August.
  44. Anning Wang & Qiang Zhang & Shuangyao Zhao & Xiaonong Lu & Zhanglin Peng, 2020. "A review-driven customer preference measurement model for product improvement: sentiment-based importance–performance analysis," Information Systems and e-Business Management, Springer, vol. 18(1), pages 61-88, March.
  45. Müller, Steffen & Beinert, Markus & Struik, Arie, 2017. "Welche Produkt­eigenschaften begeistern Kunden? - Eine Analyse von Online Reviews," Marketing Review St.Gallen, Universität St.Gallen, Institut für Marketing und Customer Insight, vol. 34(1), pages 68-74.
  46. Klostermann, Jan & Plumeyer, Anja & Böger, Daniel & Decker, Reinhold, 2018. "Extracting brand information from social networks: Integrating image, text, and social tagging data," International Journal of Research in Marketing, Elsevier, vol. 35(4), pages 538-556.
  47. Lu Datianfu & Loo Yew Liang, 2024. "Exploring the Factors Influencing University Students’ Choice of Laptop Brand in China," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(8), pages 3069-3086, August.
  48. Divakaran, Pradeep Kumar Ponnamma & Xiong, Jie, 2022. "Eliciting brand association networks: A new method using online community data," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
  49. Saba Resnik & Mateja Kos Koklič, 2018. "User-Generated Tweets about Global Green Brands: A Sentiment Analysis Approach," Tržište/Market, Faculty of Economics and Business, University of Zagreb, vol. 30(2), pages 125-145.
  50. Hobbs, Lonnie & Shanoyan, Aleksan, 2018. "Analysis of Consumer Perception of Product Attributes in Pet Food: Implications for Marketing and Brand Strategy," 2018 Annual Meeting, August 5-7, Washington, D.C. 274070, Agricultural and Applied Economics Association.
  51. Dinesh Puranam & Vishal Narayan & Vrinda Kadiyali, 2017. "The Effect of Calorie Posting Regulation on Consumer Opinion: A Flexible Latent Dirichlet Allocation Model with Informative Priors," Marketing Science, INFORMS, vol. 36(5), pages 726-746, September.
  52. Mafael, Alexander & Gottschalk, Sabrina A. & Kreis, Henning, 2016. "Examining Biased Assimilation of Brand-related Online Reviews," Journal of Interactive Marketing, Elsevier, vol. 36(C), pages 91-106.
  53. Rosa Maria Fanelli, 2019. "Seeking Gastronomic, Healthy, and Social Experiences in Tuscan Agritourism Facilities," Social Sciences, MDPI, vol. 9(1), pages 1-15, December.
  54. Daniel Kaimann & Joe Cox, 2014. "The Interaction of Signals: A Fuzzy set Analysis of the Video Game Industry," Working Papers CIE 84, Paderborn University, CIE Center for International Economics.
  55. Xiangbin Yan & Jing Wang & Michael Chau, 2015. "Customer revisit intention to restaurants: Evidence from online reviews," Information Systems Frontiers, Springer, vol. 17(3), pages 645-657, June.
  56. Sujatha T. & Wilfred Blessing N. R. & Suresh Palarimath, 2023. "Mining Competitors and Finding Winning Plans Using Feature Scoring and Ranking-Based CMiner++ Algorithm: Finding Top-K Competitors," International Journal of Intelligent Information Technologies (IJIIT), IGI Global, vol. 19(1), pages 1-11, January.
  57. Pradeep Kumar Ponnamma Divakaran & Jie Xiong, 2022. "Eliciting brand association networks: A new method using online community data," Post-Print hal-03700393, HAL.
  58. Mitra, Satanik & Jenamani, Mamata, 2020. "OBIM: A computational model to estimate brand image from online consumer review," Journal of Business Research, Elsevier, vol. 114(C), pages 213-226.
  59. Anja Plumeyer & Pascal Kottemann & Daniel Böger & Reinhold Decker, 2019. "Measuring brand image: a systematic review, practical guidance, and future research directions," Review of Managerial Science, Springer, vol. 13(2), pages 227-265, April.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.