IDEAS home Printed from https://ideas.repec.org/a/spr/sjobre/v69y2017i2d10.1007_s41471-016-0027-4.html
   My bibliography  Save this article

Verwendung von Word of Mouth-Daten zur Identifikation von Asymmetrie im Wettbewerb: Eine textbasierte Analyse am Beispiel deutscher Automobilmarken
[Identification of asymmetric competition by using word of mouth data: A text-based analysis among German automotive brands]

Author

Listed:
  • Tobias Reckmann

    (Universität Hamburg)

Abstract

Zusammenfassung Kundenkommentare im Web 2.0 stellen für Unternehmen aufgrund ihrer Menge sowie Zeitaktualität eine viel versprechende Informationsbasis dar. Entsprechend bestehen verstärkt Bestrebungen, online kommunizierte Kundenerfahrungen zu strukturieren und für die Marketingpraxis nutzbar zu machen. Dieser Beitrag stellt einen neuartigen textbasierten Ansatz vor, der es erlaubt, komplexe Wettbewerbsbeziehungen basierend auf Kundenrezensionen zu visualisieren. Am Beispiel fünf deutscher Automobilmarken lassen sich asymmetrische Wettbewerbsbeziehungen identifizieren, bei denen je nach Referenzmarke der jeweiligen Kundenerfahrung unterschiedliche Wahrnehmungen konkurrierender Marken vorliegen. Durch Offenlegung dieser heterogenen Wahrnehmungsräume von Kunden können in Frage kommende Marken für zukünftiges Wechselverhalten frühzeitig identifiziert und Ressourcen entsprechend allokiert werden.

Suggested Citation

  • Tobias Reckmann, 2017. "Verwendung von Word of Mouth-Daten zur Identifikation von Asymmetrie im Wettbewerb: Eine textbasierte Analyse am Beispiel deutscher Automobilmarken [Identification of asymmetric competition by usin," Schmalenbach Journal of Business Research, Springer, vol. 69(2), pages 173-201, June.
  • Handle: RePEc:spr:sjobre:v:69:y:2017:i:2:d:10.1007_s41471-016-0027-4
    DOI: 10.1007/s41471-016-0027-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s41471-016-0027-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1007/s41471-016-0027-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nedungadi, Prakash, 1990. "Recall and Consumer Consideration Sets: Influencing Choice without Altering Brand Evaluations," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 17(3), pages 263-276, December.
    2. Gregory S. Carpenter & Lee G. Cooper & Dominique M. Hanssens & David F. Midgley, 1988. "Modeling Asymmetric Competition," Marketing Science, INFORMS, vol. 7(4), pages 393-412.
    3. Wayne S. Desarbo & Kamel Jedidi, 1995. "The Spatial Representation of Heterogeneous Consideration Sets," Marketing Science, INFORMS, vol. 14(3), pages 326-342.
    4. Chrysanthos Dellarocas, 2003. "The Digitization of Word of Mouth: Promise and Challenges of Online Feedback Mechanisms," Management Science, INFORMS, vol. 49(10), pages 1407-1424, October.
    5. Kardes, Frank R, et al, 1993. "Brand Retrieval, Consideration Set Composition, Consumer Choice, and the Pioneering Advantage," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 20(1), pages 62-75, June.
    6. Yubo Chen & Jinhong Xie, 2008. "Online Consumer Review: Word-of-Mouth as a New Element of Marketing Communication Mix," Management Science, INFORMS, vol. 54(3), pages 477-491, March.
    7. Anindya Ghose & Panagiotis G. Ipeirotis & Beibei Li, 2012. "Designing Ranking Systems for Hotels on Travel Search Engines by Mining User-Generated and Crowdsourced Content," Marketing Science, INFORMS, vol. 31(3), pages 493-520, May.
    8. Terry Elrod, 1988. "Choice Map: Inferring a Product-Market Map from Panel Data," Marketing Science, INFORMS, vol. 7(1), pages 21-40.
    9. Kristine de Valck & Roberts V. Kozinets & Andrea C. Wojnicki & Sarah J.S. Wilner, 2010. "Networked Narratives: Understanding Word-of-Mouth Marketing in Online Communities," Post-Print hal-00458424, HAL.
    10. Decker, Reinhold & Trusov, Michael, 2010. "Estimating aggregate consumer preferences from online product reviews," International Journal of Research in Marketing, Elsevier, vol. 27(4), pages 293-307.
    11. Faure, Corinne & Natter, Martin, 2010. "New metrics for evaluating preference maps," International Journal of Research in Marketing, Elsevier, vol. 27(3), pages 261-270.
    12. J. Kruskal, 1964. "Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis," Psychometrika, Springer;The Psychometric Society, vol. 29(1), pages 1-27, March.
    13. Oded Netzer & Ronen Feldman & Jacob Goldenberg & Moshe Fresko, 2012. "Mine Your Own Business: Market-Structure Surveillance Through Text Mining," Marketing Science, INFORMS, vol. 31(3), pages 521-543, May.
    14. David Godes & Dina Mayzlin, 2004. "Using Online Conversations to Study Word-of-Mouth Communication," Marketing Science, INFORMS, vol. 23(4), pages 545-560, June.
    15. Wendy W. Moe & David A. Schweidel, 2012. "Online Product Opinions: Incidence, Evaluation, and Evolution," Marketing Science, INFORMS, vol. 31(3), pages 372-386, May.
    16. Dellarocas, Chrysanthos, 2003. "The Digitization of Word-of-mouth: Promise and Challenges of Online Feedback Mechanisms," Working papers 4296-03, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominik Gutt & Jürgen Neumann & Steffen Zimmermann & Dennis Kundisch & Jianqing Chen, 2018. "Design of Review Systems - A Strategic Instrument to shape Online Review Behavior and Economic Outcomes," Working Papers Dissertations 42, Paderborn University, Faculty of Business Administration and Economics.
    2. Khim-Yong Goh & Cheng-Suang Heng & Zhijie Lin, 2013. "Social Media Brand Community and Consumer Behavior: Quantifying the Relative Impact of User- and Marketer-Generated Content," Information Systems Research, INFORMS, vol. 24(1), pages 88-107, March.
    3. Christoph Schneider & Markus Weinmann & Peter N.C. Mohr & Jan vom Brocke, 2021. "When the Stars Shine Too Bright: The Influence of Multidimensional Ratings on Online Consumer Ratings," Management Science, INFORMS, vol. 67(6), pages 3871-3898, June.
    4. Kick, Markus, 2015. "Social Media Research: A Narrative Review," EconStor Preprints 182506, ZBW - Leibniz Information Centre for Economics.
    5. Schindler, Diana & Decker, Reinhold, 2013. "Some remarks on the internal consistency of online consumer reviews," Australasian marketing journal, Elsevier, vol. 21(4), pages 221-227.
    6. Jorge Mejia & Shawn Mankad & Anandasivam Gopal, 2019. "A for Effort? Using the Crowd to Identify Moral Hazard in New York City Restaurant Hygiene Inspections," Information Systems Research, INFORMS, vol. 30(4), pages 1363-1386, December.
    7. Yucheng Zhang & Zhiling Wang & Lin Xiao & Lijun Wang & Pei Huang, 2023. "Discovering the evolution of online reviews: A bibliometric review," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-22, December.
    8. Pauwels, Koen & Aksehirli, Zeynep & Lackman, Andrew, 2016. "Like the ad or the brand? Marketing stimulates different electronic word-of-mouth content to drive online and offline performance," International Journal of Research in Marketing, Elsevier, vol. 33(3), pages 639-655.
    9. Ana Babić Rosario & Kristine Valck & Francesca Sotgiu, 2020. "Conceptualizing the electronic word-of-mouth process: What we know and need to know about eWOM creation, exposure, and evaluation," Journal of the Academy of Marketing Science, Springer, vol. 48(3), pages 422-448, May.
    10. Raassens, N. & Haans, Hans, 2017. "NPS and online WOM investigating the relationship between customers’ promoter scores and eWOM behavior," Other publications TiSEM 931e7761-7c6e-40ee-8976-2, Tilburg University, School of Economics and Management.
    11. Bitty Balducci & Detelina Marinova, 2018. "Unstructured data in marketing," Journal of the Academy of Marketing Science, Springer, vol. 46(4), pages 557-590, July.
    12. Yabing Jiang & Hong Guo, 2015. "Design of Consumer Review Systems and Product Pricing," Information Systems Research, INFORMS, vol. 26(4), pages 714-730, December.
    13. Saeed Tajdini, 2023. "The effects of internet search intensity for products on companies’ stock returns: a competitive intelligence perspective," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(3), pages 352-365, September.
    14. King, Robert Allen & Racherla, Pradeep & Bush, Victoria D., 2014. "What We Know and Don't Know About Online Word-of-Mouth: A Review and Synthesis of the Literature," Journal of Interactive Marketing, Elsevier, vol. 28(3), pages 167-183.
    15. Colmekcioglu, Nazan & Marvi, Reza & Foroudi, Pantea & Okumus, Fevzi, 2022. "Generation, susceptibility, and response regarding negativity: An in-depth analysis on negative online reviews," Journal of Business Research, Elsevier, vol. 153(C), pages 235-250.
    16. Kun Chen & Peng Luo & Huaiqing Wang, 2017. "Investigating transitive influences on WOM: from the product network perspective," Electronic Commerce Research, Springer, vol. 17(1), pages 149-167, March.
    17. Daniel Kaimann & Joe Cox, 2014. "The Interaction of Signals: A Fuzzy set Analysis of the Video Game Industry," Working Papers Dissertations 13, Paderborn University, Faculty of Business Administration and Economics.
    18. Akbari, Morteza & Foroudi, Pantea & Zaman Fashami, Rahime & Mahavarpour, Nasrin & Khodayari, Maryam, 2022. "Let us talk about something: The evolution of e-WOM from the past to the future," Journal of Business Research, Elsevier, vol. 149(C), pages 663-689.
    19. Daniel Kaimann & Joe Cox, 2014. "The Interaction of Signals: A Fuzzy set Analysis of the Video Game Industry," Working Papers CIE 84, Paderborn University, CIE Center for International Economics.
    20. Andrew M. Davis & Vishal Gaur & Dayoung Kim, 2021. "Consumer Learning from Own Experience and Social Information: An Experimental Study," Management Science, INFORMS, vol. 67(5), pages 2924-2943, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sjobre:v:69:y:2017:i:2:d:10.1007_s41471-016-0027-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.