IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v47y2016i13p3272-3286.html
   My bibliography  Save this article

Mining consumer reviews to generate ratings of different product attributes while producing feature-based review-summary

Author

Listed:
  • Akshay Kangale
  • S. Krishna Kumar
  • Mohd Arshad Naeem
  • Mark Williams
  • M. K. Tiwari

Abstract

With the massive growth of the internet, product reviews increasingly serve as an important source of information for customers to make choices online. Customers depend on these reviews to understand users’ experience, and manufacturers rely on this user-generated content to capture user sentiments about their product. Therefore, it is in the best interest of both customers and manufacturers to have a portal where they can read a complete comprehensive summary of these reviews in minimum time. With this in mind, we arrived at our first objective which is to generate a feature-based review-summary. Our second objective is to develop a predictive model to know the next week's product sales based on numerical review ratings and textual features embedded in the reviews. When it comes to product features, every user has different priorities for different features. To capture this aspect of decision-making, we have designed a new mechanism to generate a numerical rating for every feature of the product individually. The data have been collected from a well-known commercial website for two different products. The validation of the model is carried out using a crowd-sourcing technique.

Suggested Citation

  • Akshay Kangale & S. Krishna Kumar & Mohd Arshad Naeem & Mark Williams & M. K. Tiwari, 2016. "Mining consumer reviews to generate ratings of different product attributes while producing feature-based review-summary," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(13), pages 3272-3286, October.
  • Handle: RePEc:taf:tsysxx:v:47:y:2016:i:13:p:3272-3286
    DOI: 10.1080/00207721.2015.1116640
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2015.1116640
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2015.1116640?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sanjiv R. Das & Mike Y. Chen, 2007. "Yahoo! for Amazon: Sentiment Extraction from Small Talk on the Web," Management Science, INFORMS, vol. 53(9), pages 1375-1388, September.
    2. Nikolay Archak & Anindya Ghose & Panagiotis G. Ipeirotis, 2011. "Deriving the Pricing Power of Product Features by Mining Consumer Reviews," Management Science, INFORMS, vol. 57(8), pages 1485-1509, August.
    3. Jehoshua Eliashberg & Sam K. Hui & Z. John Zhang, 2007. "From Story Line to Box Office: A New Approach for Green-Lighting Movie Scripts," Management Science, INFORMS, vol. 53(6), pages 881-893, June.
    4. Decker, Reinhold & Trusov, Michael, 2010. "Estimating aggregate consumer preferences from online product reviews," International Journal of Research in Marketing, Elsevier, vol. 27(4), pages 293-307.
    5. Xinxin Li & Lorin M. Hitt, 2008. "Self-Selection and Information Role of Online Product Reviews," Information Systems Research, INFORMS, vol. 19(4), pages 456-474, December.
    6. Nikolay Archak & Anindya Ghose & Panagiotis G. Ipeirotis, 2007. "Deriving the Pricing Power of Product Features by Mining Consumer Reviews," Working Papers 07-36, NET Institute.
    7. Yubo Chen & Jinhong Xie, 2008. "Online Consumer Review: Word-of-Mouth as a New Element of Marketing Communication Mix," Management Science, INFORMS, vol. 54(3), pages 477-491, March.
    8. Jiazhen He & Yang Zhang & Xue Li & Peng Shi, 2012. "Learning naive Bayes classifiers from positive and unlabelled examples with uncertainty," International Journal of Systems Science, Taylor & Francis Journals, vol. 43(10), pages 1805-1825.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bag, Sujoy & Tiwari, Manoj Kumar & Chan, Felix T.S., 2019. "Predicting the consumer's purchase intention of durable goods: An attribute-level analysis," Journal of Business Research, Elsevier, vol. 94(C), pages 408-419.
    2. Yao Jiao & Yu Yang, 2019. "A product configuration approach based on online data," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2473-2487, August.
    3. Soumya Mukhopadhyay, 2018. "Opinion mining in management research: the state of the art and the way forward," OPSEARCH, Springer;Operational Research Society of India, vol. 55(2), pages 221-250, June.
    4. Yao Jiao & Yu Yang & Hongshan Zhang, 2019. "An integration model for generating and selecting product configuration plans," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1291-1302, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anindya Ghose & Panagiotis G. Ipeirotis & Beibei Li, 2012. "Designing Ranking Systems for Hotels on Travel Search Engines by Mining User-Generated and Crowdsourced Content," Marketing Science, INFORMS, vol. 31(3), pages 493-520, May.
    2. Daniel Kaimann & Joe Cox, 2014. "The Interaction of Signals: A Fuzzy set Analysis of the Video Game Industry," Working Papers Dissertations 13, Paderborn University, Faculty of Business Administration and Economics.
    3. Oded Netzer & Ronen Feldman & Jacob Goldenberg & Moshe Fresko, 2012. "Mine Your Own Business: Market-Structure Surveillance Through Text Mining," Marketing Science, INFORMS, vol. 31(3), pages 521-543, May.
    4. Nikolay Archak & Anindya Ghose & Panagiotis G. Ipeirotis, 2011. "Deriving the Pricing Power of Product Features by Mining Consumer Reviews," Management Science, INFORMS, vol. 57(8), pages 1485-1509, August.
    5. Daniel Kaimann & Joe Cox, 2014. "The Interaction of Signals: A Fuzzy set Analysis of the Video Game Industry," Working Papers CIE 84, Paderborn University, CIE Center for International Economics.
    6. Xiao Liu & Param Vir Singh & Kannan Srinivasan, 2016. "A Structured Analysis of Unstructured Big Data by Leveraging Cloud Computing," Marketing Science, INFORMS, vol. 35(3), pages 363-388, May.
    7. Anning Wang & Qiang Zhang & Shuangyao Zhao & Xiaonong Lu & Zhanglin Peng, 2020. "A review-driven customer preference measurement model for product improvement: sentiment-based importance–performance analysis," Information Systems and e-Business Management, Springer, vol. 18(1), pages 61-88, March.
    8. Kick, Markus, 2015. "Social Media Research: A Narrative Review," EconStor Preprints 182506, ZBW - Leibniz Information Centre for Economics.
    9. Schneider, Matthew J. & Gupta, Sachin, 2016. "Forecasting sales of new and existing products using consumer reviews: A random projections approach," International Journal of Forecasting, Elsevier, vol. 32(2), pages 243-256.
    10. Bin Guo & Shasha Zhou, 2017. "What makes population perception of review helpfulness: an information processing perspective," Electronic Commerce Research, Springer, vol. 17(4), pages 585-608, December.
    11. Dinesh Puranam & Vishal Narayan & Vrinda Kadiyali, 2017. "The Effect of Calorie Posting Regulation on Consumer Opinion: A Flexible Latent Dirichlet Allocation Model with Informative Priors," Marketing Science, INFORMS, vol. 36(5), pages 726-746, September.
    12. Floyd, Kristopher & Freling, Ryan & Alhoqail, Saad & Cho, Hyun Young & Freling, Traci, 2014. "How Online Product Reviews Affect Retail Sales: A Meta-analysis," Journal of Retailing, Elsevier, vol. 90(2), pages 217-232.
    13. Weijia (Daisy) Dai & Ginger Jin & Jungmin Lee & Michael Luca, 2018. "Aggregation of consumer ratings: an application to Yelp.com," Quantitative Marketing and Economics (QME), Springer, vol. 16(3), pages 289-339, September.
    14. Yili Hong & Pei-yu Chen & Lorin Hitt, 2014. "Measuring Product Type with Dynamics of Online Product Review Variances: A Theoretical Model and the Empirical Applications," Working Papers 14-03, NET Institute.
    15. Philipp Herrmann, 2014. "The impact of the variance of online consumer ratings on pricing and demand – An analytical model," Working Papers Dissertations 07, Paderborn University, Faculty of Business Administration and Economics.
    16. Young Kwark & Jianqing Chen & Srinivasan Raghunathan, 2018. "User-Generated Content and Competing Firms’ Product Design," Management Science, INFORMS, vol. 64(10), pages 4608-4628, October.
    17. Yue Ma & Guoqing Chen & Qiang Wei, 2017. "Finding users preferences from large-scale online reviews for personalized recommendation," Electronic Commerce Research, Springer, vol. 17(1), pages 3-29, March.
    18. Schindler, Diana & Decker, Reinhold, 2013. "Some remarks on the internal consistency of online consumer reviews," Australasian marketing journal, Elsevier, vol. 21(4), pages 221-227.
    19. Kun Chen & Peng Luo & Huaiqing Wang, 2017. "Investigating transitive influences on WOM: from the product network perspective," Electronic Commerce Research, Springer, vol. 17(1), pages 149-167, March.
    20. Li, Yiming & Li, Gang & Tayi, Giri Kumar & Cheng, T.C.E., 2019. "Omni-channel retailing: Do offline retailers benefit from online reviews?," International Journal of Production Economics, Elsevier, vol. 218(C), pages 43-61.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:47:y:2016:i:13:p:3272-3286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.