IDEAS home Printed from https://ideas.repec.org/a/eee/ijrema/v34y2017i1p265-285.html
   My bibliography  Save this article

A picture is worth a thousand words: Translating product reviews into a product positioning map

Author

Listed:
  • Moon, Sangkil
  • Kamakura, Wagner A.

Abstract

Product reviews are becoming ubiquitous on the Web, representing a rich source of consumer information on a wide range of product categories (e.g., wines and hotels). Importantly, a product review reflects not only the perception and preference for a product, but also the acuity, bias, and writing style of the reviewer. This reviewer aspect has been overlooked in past studies that have drawn inferences about brands from online product reviews. Our framework combines ontology learning-based text mining and psychometric techniques to translate online product reviews into a product positioning map, while accounting for the idiosyncratic responses and writing styles of individual reviewers or a manageable number of reviewer groups (i.e., meta-reviewers). Our empirical illustrations using wine and hotel reviews demonstrate that a product review reveals information about the reviewer (for the wine example with a small number of expert reviewers) or the meta-reviewer (for the hotel example with an enormous number of reviewers reduced to a manageable number of meta-reviewers), as well as about the product under review. From a managerial perspective, product managers can use our framework focusing on meta-reviewers (e.g., traveler types and hotel reservation websites in our hotel example) as a way to obtain insights into their consumer segmentation strategy.

Suggested Citation

  • Moon, Sangkil & Kamakura, Wagner A., 2017. "A picture is worth a thousand words: Translating product reviews into a product positioning map," International Journal of Research in Marketing, Elsevier, vol. 34(1), pages 265-285.
  • Handle: RePEc:eee:ijrema:v:34:y:2017:i:1:p:265-285
    DOI: 10.1016/j.ijresmar.2016.05.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016781161630074X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijresmar.2016.05.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aggarwal, Praveen & Vaidyanathan, Rajiv & Venkatesh, Alladi, 2009. "Using Lexical Semantic Analysis to Derive Online Brand Positions: An Application to Retail Marketing Research," Journal of Retailing, Elsevier, vol. 85(2), pages 145-158.
    2. Nikolay Archak & Anindya Ghose & Panagiotis G. Ipeirotis, 2007. "Deriving the Pricing Power of Product Features by Mining Consumer Reviews," Working Papers 07-36, NET Institute.
    3. Nikolay Archak & Anindya Ghose & Panagiotis G. Ipeirotis, 2011. "Deriving the Pricing Power of Product Features by Mining Consumer Reviews," Management Science, INFORMS, vol. 57(8), pages 1485-1509, August.
    4. Anindya Ghose & Panagiotis G. Ipeirotis & Beibei Li, 2012. "Designing Ranking Systems for Hotels on Travel Search Engines by Mining User-Generated and Crowdsourced Content," Marketing Science, INFORMS, vol. 31(3), pages 493-520, May.
    5. Alba, Joseph W & Hutchinson, J Wesley, 1987. "Dimensions of Consumer Expertise," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 13(4), pages 411-454, March.
    6. Decker, Reinhold & Trusov, Michael, 2010. "Estimating aggregate consumer preferences from online product reviews," International Journal of Research in Marketing, Elsevier, vol. 27(4), pages 293-307.
    7. Camacho, N.M.A. & de Jong, M.G. & Stremersch, S., 2014. "The Effect of Customer Empowerment on Adherence to Expert Advice," ERIM Report Series Research in Management ERS-2014-005-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    8. Wayne DeSarbo & Joonwook Park & Vithala Rao, 2011. "Deriving joint space positioning maps from consumer preference ratings," Marketing Letters, Springer, vol. 22(1), pages 1-14, March.
    9. Faure, Corinne & Natter, Martin, 2010. "New metrics for evaluating preference maps," International Journal of Research in Marketing, Elsevier, vol. 27(3), pages 261-270.
    10. Oded Netzer & Ronen Feldman & Jacob Goldenberg & Moshe Fresko, 2012. "Mine Your Own Business: Market-Structure Surveillance Through Text Mining," Marketing Science, INFORMS, vol. 31(3), pages 521-543, May.
    11. Camacho, Nuno & De Jong, Martijn & Stremersch, Stefan, 2014. "The effect of customer empowerment on adherence to expert advice," International Journal of Research in Marketing, Elsevier, vol. 31(3), pages 293-308.
    12. Kostyra, Daniel S. & Reiner, Jochen & Natter, Martin & Klapper, Daniel, 2016. "Decomposing the effects of online customer reviews on brand, price, and product attributes," International Journal of Research in Marketing, Elsevier, vol. 33(1), pages 11-26.
    13. Michel Wedel & Wagner Kamakura, 2001. "Factor analysis with (mixed) observed and latent variables in the exponential family," Psychometrika, Springer;The Psychometric Society, vol. 66(4), pages 515-530, December.
    14. Peck, Joann & Childers, Terry L, 2003. "Individual Differences in Haptic Information Processing: The "Need for Touch" Scale," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 30(3), pages 430-442, December.
    15. Wagner Kamakura & Suman Basuroy & Peter Boatwright, 2006. "Is silence golden? An inquiry into the meaning of silence in professional product evaluations," Quantitative Marketing and Economics (QME), Springer, vol. 4(2), pages 119-141, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesca Negri, 2018. "A (Social Media) picture is worth a thousand words," MERCATI & COMPETITIVIT?, FrancoAngeli Editore, vol. 2018(4), pages 47-64.
    2. Roelen-Blasberg, Tobias & Habel, Johannes & Klarmann, Martin, 2023. "Automated inference of product attributes and their importance from user-generated content: Can we replace traditional market research?," International Journal of Research in Marketing, Elsevier, vol. 40(1), pages 164-188.
    3. Gensler, Sonja & Oehring, Karlo & Wiesel, Thorsten, 2024. "Reported and communicated shifts in strategic emphasis and firm performance," International Journal of Research in Marketing, Elsevier, vol. 41(2), pages 220-240.
    4. Moon, Sangkil & Kim, Moon-Yong & Iacobucci, Dawn, 2021. "Content analysis of fake consumer reviews by survey-based text categorization," International Journal of Research in Marketing, Elsevier, vol. 38(2), pages 343-364.
    5. Moon, Sangkil & Kim, Seung-Wook & Iacobucci, Dawn, 2024. "Dynamic relationship changes between reviewers and consumers in online product reviews," Journal of Retailing, Elsevier, vol. 100(1), pages 70-84.
    6. Vermeer, Susan A.M. & Araujo, Theo & Bernritter, Stefan F. & van Noort, Guda, 2019. "Seeing the wood for the trees: How machine learning can help firms in identifying relevant electronic word-of-mouth in social media," International Journal of Research in Marketing, Elsevier, vol. 36(3), pages 492-508.
    7. Das, Ronnie & Ahmed, Wasim & Sharma, Kshitij & Hardey, Mariann & Dwivedi, Yogesh K. & Zhang, Ziqi & Apostolidis, Chrysostomos & Filieri, Raffaele, 2024. "Towards the development of an explainable e-commerce fake review index: An attribute analytics approach," European Journal of Operational Research, Elsevier, vol. 317(2), pages 382-400.
    8. Tammo H.A. Bijmolt & Michel Wedel & Wayne S. DeSarbo, 2021. "Adaptive Multidimensional Scaling: Brand Positioning Based on Decision Sets and Dissimilarity Judgments," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 8(1), pages 1-15, June.
    9. Mike McGuirk, 2021. "Performing social media analytics with Brandwatch for Classrooms: a platform review," Journal of Marketing Analytics, Palgrave Macmillan, vol. 9(4), pages 363-378, December.
    10. Moon, Sangkil & Kim, Moon-Yong & Bergey, Paul K., 2019. "Estimating deception in consumer reviews based on extreme terms: Comparison analysis of open vs. closed hotel reservation platforms," Journal of Business Research, Elsevier, vol. 102(C), pages 83-96.
    11. Carlson, Keith & Kopalle, Praveen K. & Riddell, Allen & Rockmore, Daniel & Vana, Prasad, 2023. "Complementing human effort in online reviews: A deep learning approach to automatic content generation and review synthesis," International Journal of Research in Marketing, Elsevier, vol. 40(1), pages 54-74.
    12. Moon, Sangkil & Jalali, Nima & Erevelles, Sunil, 2021. "Segmentation of both reviewers and businesses on social media," Journal of Retailing and Consumer Services, Elsevier, vol. 61(C).
    13. Bitty Balducci & Detelina Marinova, 2018. "Unstructured data in marketing," Journal of the Academy of Marketing Science, Springer, vol. 46(4), pages 557-590, July.
    14. Alzate, Miriam & Arce-Urriza, Marta & Cebollada, Javier, 2022. "Mining the text of online consumer reviews to analyze brand image and brand positioning," Journal of Retailing and Consumer Services, Elsevier, vol. 67(C).
    15. Klostermann, Jan & Plumeyer, Anja & Böger, Daniel & Decker, Reinhold, 2018. "Extracting brand information from social networks: Integrating image, text, and social tagging data," International Journal of Research in Marketing, Elsevier, vol. 35(4), pages 538-556.
    16. Mitra, Satanik & Jenamani, Mamata, 2020. "OBIM: A computational model to estimate brand image from online consumer review," Journal of Business Research, Elsevier, vol. 114(C), pages 213-226.
    17. Nima Jalali & Sangkil Moon & Moon-Yong Kim, 2023. "Profiling diverse reviewer segments using online reviews of service industries," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(2), pages 130-148, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlson, Keith & Kopalle, Praveen K. & Riddell, Allen & Rockmore, Daniel & Vana, Prasad, 2023. "Complementing human effort in online reviews: A deep learning approach to automatic content generation and review synthesis," International Journal of Research in Marketing, Elsevier, vol. 40(1), pages 54-74.
    2. Bitty Balducci & Detelina Marinova, 2018. "Unstructured data in marketing," Journal of the Academy of Marketing Science, Springer, vol. 46(4), pages 557-590, July.
    3. Xiao Liu & Param Vir Singh & Kannan Srinivasan, 2016. "A Structured Analysis of Unstructured Big Data by Leveraging Cloud Computing," Marketing Science, INFORMS, vol. 35(3), pages 363-388, May.
    4. Oded Netzer & Ronen Feldman & Jacob Goldenberg & Moshe Fresko, 2012. "Mine Your Own Business: Market-Structure Surveillance Through Text Mining," Marketing Science, INFORMS, vol. 31(3), pages 521-543, May.
    5. Dinesh Puranam & Vishal Narayan & Vrinda Kadiyali, 2017. "The Effect of Calorie Posting Regulation on Consumer Opinion: A Flexible Latent Dirichlet Allocation Model with Informative Priors," Marketing Science, INFORMS, vol. 36(5), pages 726-746, September.
    6. Tobias Reckmann, 2017. "Verwendung von Word of Mouth-Daten zur Identifikation von Asymmetrie im Wettbewerb: Eine textbasierte Analyse am Beispiel deutscher Automobilmarken [Identification of asymmetric competition by usin," Schmalenbach Journal of Business Research, Springer, vol. 69(2), pages 173-201, June.
    7. Jorge Mejia & Shawn Mankad & Anandasivam Gopal, 2019. "A for Effort? Using the Crowd to Identify Moral Hazard in New York City Restaurant Hygiene Inspections," Information Systems Research, INFORMS, vol. 30(4), pages 1363-1386, December.
    8. Anindya Ghose & Panagiotis G. Ipeirotis & Beibei Li, 2012. "Designing Ranking Systems for Hotels on Travel Search Engines by Mining User-Generated and Crowdsourced Content," Marketing Science, INFORMS, vol. 31(3), pages 493-520, May.
    9. Pei-Yu Chen & Yili Hong & Ying Liu, 2018. "The Value of Multidimensional Rating Systems: Evidence from a Natural Experiment and Randomized Experiments," Management Science, INFORMS, vol. 64(10), pages 4629-4647, October.
    10. Dominik Gutt & Jürgen Neumann & Steffen Zimmermann & Dennis Kundisch & Jianqing Chen, 2018. "Design of Review Systems - A Strategic Instrument to shape Online Review Behavior and Economic Outcomes," Working Papers Dissertations 42, Paderborn University, Faculty of Business Administration and Economics.
    11. Weijia (Daisy) Dai & Ginger Jin & Jungmin Lee & Michael Luca, 2018. "Aggregation of consumer ratings: an application to Yelp.com," Quantitative Marketing and Economics (QME), Springer, vol. 16(3), pages 289-339, September.
    12. Li, Xi & Shi, Mengze & Wang, Xin (Shane), 2019. "Video mining: Measuring visual information using automatic methods," International Journal of Research in Marketing, Elsevier, vol. 36(2), pages 216-231.
    13. Roelen-Blasberg, Tobias & Habel, Johannes & Klarmann, Martin, 2023. "Automated inference of product attributes and their importance from user-generated content: Can we replace traditional market research?," International Journal of Research in Marketing, Elsevier, vol. 40(1), pages 164-188.
    14. Jia Liu & Olivier Toubia, 2018. "A Semantic Approach for Estimating Consumer Content Preferences from Online Search Queries," Marketing Science, INFORMS, vol. 37(6), pages 930-952, November.
    15. Yi-Fen Chen & Shi-Han Chang, 2016. "The online framing effect: the moderating role of warning, brand familiarity, and product type," Electronic Commerce Research, Springer, vol. 16(3), pages 355-374, September.
    16. Akshay Kangale & S. Krishna Kumar & Mohd Arshad Naeem & Mark Williams & M. K. Tiwari, 2016. "Mining consumer reviews to generate ratings of different product attributes while producing feature-based review-summary," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(13), pages 3272-3286, October.
    17. Christoph Schneider & Markus Weinmann & Peter N.C. Mohr & Jan vom Brocke, 2021. "When the Stars Shine Too Bright: The Influence of Multidimensional Ratings on Online Consumer Ratings," Management Science, INFORMS, vol. 67(6), pages 3871-3898, June.
    18. Xin (Shane) Wang & Feng Mai & Roger H. L. Chiang, 2014. "Database Submission ---Market Dynamics and User-Generated Content About Tablet Computers," Marketing Science, INFORMS, vol. 33(3), pages 449-458, May.
    19. Mitra, Satanik & Jenamani, Mamata, 2020. "OBIM: A computational model to estimate brand image from online consumer review," Journal of Business Research, Elsevier, vol. 114(C), pages 213-226.
    20. Yue Ma & Guoqing Chen & Qiang Wei, 2017. "Finding users preferences from large-scale online reviews for personalized recommendation," Electronic Commerce Research, Springer, vol. 17(1), pages 3-29, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijrema:v:34:y:2017:i:1:p:265-285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-research-in-marketing/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.