IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v80y2015icp303-317.html
   My bibliography  Save this item

A pseudo three-dimensional electrochemical–thermal model of a prismatic LiFePO4 battery during discharge process

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. He, Tengfei & Zhang, Teng & Wang, Zhirong & Cai, Qiong, 2022. "A comprehensive numerical study on electrochemical-thermal models of a cylindrical lithium-ion battery during discharge process," Applied Energy, Elsevier, vol. 313(C).
  2. Chen, Jingwei & E, Jiaqiang & Kang, Siyi & Zhao, Xiaohuan & Zhu, Hao & Deng, Yuanwang & Peng, Qingguo & Zhang, Zhiqing, 2019. "Modeling and characterization of the mass transfer and thermal mechanics of the power lithium manganate battery under charging process," Energy, Elsevier, vol. 187(C).
  3. Shi, Haotian & Wang, Shunli & Huang, Qi & Fernandez, Carlos & Liang, Jianhong & Zhang, Mengyun & Qi, Chuangshi & Wang, Liping, 2024. "Improved electric-thermal-aging multi-physics domain coupling modeling and identification decoupling of complex kinetic processes based on timescale quantification in lithium-ion batteries," Applied Energy, Elsevier, vol. 353(PB).
  4. Zhang, Liwen & Zhao, Peng & Xu, Meng & Wang, Xia, 2020. "Computational identification of the safety regime of Li-ion battery thermal runaway," Applied Energy, Elsevier, vol. 261(C).
  5. Li, Junfu & Lai, Qingzhi & Wang, Lixin & Lyu, Chao & Wang, Han, 2016. "A method for SOC estimation based on simplified mechanistic model for LiFePO4 battery," Energy, Elsevier, vol. 114(C), pages 1266-1276.
  6. Ardani, M.I. & Patel, Y. & Siddiq, A. & Offer, G.J. & Martinez-Botas, R.F., 2018. "Combined experimental and numerical evaluation of the differences between convective and conductive thermal control on the performance of a lithium ion cell," Energy, Elsevier, vol. 144(C), pages 81-97.
  7. Singh, Shishir Kumar & Shalu, & Balo, Liton & Gupta, Himani & Singh, Varun Kumar & Tripathi, Alok Kumar & Verma, Yogendra Lal & Singh, Rajendra Kumar, 2018. "Improved electrochemical performance of EMIMFSI ionic liquid based gel polymer electrolyte with temperature for rechargeable lithium battery," Energy, Elsevier, vol. 150(C), pages 890-900.
  8. Yetik, Ozge & Morali, Ugur & Karakoc, Tahir Hikmet, 2023. "A numerical study of thermal management of lithium-ion battery with nanofluid," Energy, Elsevier, vol. 284(C).
  9. Nan Lin & Fridolin Röder & Ulrike Krewer, 2018. "Multiphysics Modeling for Detailed Analysis of Multi-Layer Lithium-Ion Pouch Cells," Energies, MDPI, vol. 11(11), pages 1-26, November.
  10. Zhao, Xiaowei & Cai, Yishan & Yang, Lin & Deng, Zhongwei & Qiang, Jiaxi, 2017. "State of charge estimation based on a new dual-polarization-resistance model for electric vehicles," Energy, Elsevier, vol. 135(C), pages 40-52.
  11. Tao Zhu & Haitao Min & Yuanbin Yu & Zhongmin Zhao & Tao Xu & Yang Chen & Xinyong Li & Cong Zhang, 2017. "An Optimized Energy Management Strategy for Preheating Vehicle-Mounted Li-ion Batteries at Subzero Temperatures," Energies, MDPI, vol. 10(2), pages 1-23, February.
  12. Ahmed Mahmood & Timothy Cockerill & Greg de Boer & Jochen Voss & Harvey Thompson, 2024. "Heat Transfer Modeling and Optimal Thermal Management of Electric Vehicle Battery Systems," Energies, MDPI, vol. 17(18), pages 1-26, September.
  13. Li, Junfu & Wang, Lixin & Lyu, Chao & Zhang, Liqiang & Wang, Han, 2015. "Discharge capacity estimation for Li-ion batteries based on particle filter under multi-operating conditions," Energy, Elsevier, vol. 86(C), pages 638-648.
  14. Ibrahim, Amier & Jiang, Fangming, 2021. "The electric vehicle energy management: An overview of the energy system and related modeling and simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
  15. Giorgio Previati & Giampiero Mastinu & Massimiliano Gobbi, 2022. "Thermal Management of Electrified Vehicles—A Review," Energies, MDPI, vol. 15(4), pages 1-29, February.
  16. Xiaogang Wu & Siyu Lv & Jizhong Chen, 2017. "Determination of the Optimum Heat Transfer Coefficient and Temperature Rise Analysis for a Lithium-Ion Battery under the Conditions of Harbin City Bus Driving Cycles," Energies, MDPI, vol. 10(11), pages 1-17, October.
  17. Geonhui Gwak & Hyunchul Ju, 2019. "Multi-Scale and Multi-Dimensional Thermal Modeling of Lithium-Ion Batteries," Energies, MDPI, vol. 12(3), pages 1-27, January.
  18. Yubai Li & Zhifu Zhou & Wei-Tao Wu, 2020. "Three-Dimensional Thermal Modeling of Internal Shorting Process in a 20Ah Lithium-Ion Polymer Battery," Energies, MDPI, vol. 13(4), pages 1-16, February.
  19. Guo, Chao & Liu, Huan-ling & Guo, Qi & Shao, Xiao-dong & Zhu, Ming-liang, 2022. "Investigations on a novel cold plate achieved by topology optimization for lithium-ion batteries," Energy, Elsevier, vol. 261(PA).
  20. Bahman Shabani & Manu Biju, 2015. "Theoretical Modelling Methods for Thermal Management of Batteries," Energies, MDPI, vol. 8(9), pages 1-25, September.
  21. Zuo, Hongyan & Zhang, Bin & Huang, Zhonghua & Wei, Kexiang & Zhu, Hong & Tan, Jiqiu, 2022. "Effect analysis on SOC values of the power lithium manganate battery during discharging process and its intelligent estimation," Energy, Elsevier, vol. 238(PB).
  22. Akula, Rajesh & Balaji, C., 2022. "Thermal management of 18650 Li-ion battery using novel fins–PCM–EG composite heat sinks," Applied Energy, Elsevier, vol. 316(C).
  23. Xinyu Liu & Zhifu Zhou & Weitao Wu & Linsong Gao & Yang Li & Heng Huang & Zheng Huang & Yubai Li & Yongchen Song, 2022. "Three-Dimensional Modeling for the Internal Shorting Caused Thermal Runaway Process in 20Ah Lithium-Ion Battery," Energies, MDPI, vol. 15(19), pages 1-25, September.
  24. Zhao, Rui & Liu, Jie & Gu, Junjie, 2017. "A comprehensive study on Li-ion battery nail penetrations and the possible solutions," Energy, Elsevier, vol. 123(C), pages 392-401.
  25. Xu, Meng & Wang, Xia & Zhang, Liwen & Zhao, Peng, 2021. "Comparison of the effect of linear and two-step fast charging protocols on degradation of lithium ion batteries," Energy, Elsevier, vol. 227(C).
  26. Guo, Zengjia & Xu, Qidong & Wang, Yang & Zhao, Tianshou & Ni, Meng, 2023. "Battery thermal management system with heat pipe considering battery aging effect," Energy, Elsevier, vol. 263(PE).
  27. Yang, Yue & Chen, Lei & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2020. "Capacity fade characteristics of lithium iron phosphate cell during dynamic cycle," Energy, Elsevier, vol. 206(C).
  28. Li, Dongdong & Yang, Lin & Li, Chun, 2021. "Control-oriented thermal-electrochemical modeling and validation of large size prismatic lithium battery for commercial applications," Energy, Elsevier, vol. 214(C).
  29. Marcel Roy B. Domalanta & Julie Anne D. R. Paraggua, 2023. "A Multiphysics Model Simulating the Electrochemical, Thermal, and Thermal Runaway Behaviors of Lithium Polymer Battery," Energies, MDPI, vol. 16(6), pages 1-24, March.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.