IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v214y2021ics0360544220321642.html
   My bibliography  Save this article

Control-oriented thermal-electrochemical modeling and validation of large size prismatic lithium battery for commercial applications

Author

Listed:
  • Li, Dongdong
  • Yang, Lin
  • Li, Chun

Abstract

Adopting the uniform temperature for thermal-electrochemical model is not suitable to simulate the large size battery which has big temperature difference between internal and surface. Furthermore, heavy computational burden of coupling model hinders the control-oriented onboard applications. Therefore, considering the compensation with spatial temperature, a control-oriented thermal-electrochemical model is proposed and validated for commercial large size battery. For both parts of coupled model, the multilayer thermal model and polynomial approximation method are applied to describe the thermal behavior and electrochemical process. And the two-way effects are coupled by the temperature dependent parameters which have vital influence in electrochemical reactions. Furthermore, the effectiveness of control-oriented thermal model and electrochemical model is validated under two typical cycles and constant current loading at wide temperature range (−25 °C–45 °C). Meanwhile, the variation of temperature dependent parameters and accuracy of coupled model are validated under two typical cycles at wide ambient temperature range. The results show that, for commercial large size battery, comparing with famous pseudo-two-dimensional model widely used in offline simulation, the accuracy is improved on average at different temperatures, and computational time falls 98.5% under dynamic loading conditions which satisfies the requirement of online calculation.

Suggested Citation

  • Li, Dongdong & Yang, Lin & Li, Chun, 2021. "Control-oriented thermal-electrochemical modeling and validation of large size prismatic lithium battery for commercial applications," Energy, Elsevier, vol. 214(C).
  • Handle: RePEc:eee:energy:v:214:y:2021:i:c:s0360544220321642
    DOI: 10.1016/j.energy.2020.119057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220321642
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghadimi, Noradin & Akbarimajd, Adel & Shayeghi, Hossein & Abedinia, Oveis, 2018. "Two stage forecast engine with feature selection technique and improved meta-heuristic algorithm for electricity load forecasting," Energy, Elsevier, vol. 161(C), pages 130-142.
    2. Tanim, Tanvir R. & Rahn, Christopher D. & Wang, Chao-Yang, 2015. "State of charge estimation of a lithium ion cell based on a temperature dependent and electrolyte enhanced single particle model," Energy, Elsevier, vol. 80(C), pages 731-739.
    3. Yang, Lin & Cai, Yishan & Yang, Yixin & Deng, Zhongwei, 2020. "Supervisory long-term prediction of state of available power for lithium-ion batteries in electric vehicles," Applied Energy, Elsevier, vol. 257(C).
    4. Yuan, Jingni & Yang, Lin, 2019. "Predictive energy management strategy for connected 48V hybrid electric vehicles," Energy, Elsevier, vol. 187(C).
    5. Cai, Yishan & Yang, Lin & Deng, Zhongwei & Zhao, Xiaowei & Deng, Hao, 2018. "Online identification of lithium-ion battery state-of-health based on fast wavelet transform and cross D-Markov machine," Energy, Elsevier, vol. 147(C), pages 621-635.
    6. Deng, Zhongwei & Yang, Lin & Deng, Hao & Cai, Yishan & Li, Dongdong, 2018. "Polynomial approximation pseudo-two-dimensional battery model for online application in embedded battery management system," Energy, Elsevier, vol. 142(C), pages 838-850.
    7. Xu, Meng & Zhang, Zhuqian & Wang, Xia & Jia, Li & Yang, Lixin, 2015. "A pseudo three-dimensional electrochemical–thermal model of a prismatic LiFePO4 battery during discharge process," Energy, Elsevier, vol. 80(C), pages 303-317.
    8. Ma, Yan & Mou, Hongyuan & Zhao, Haiyan, 2020. "Cooling optimization strategy for lithium-ion batteries based on triple-step nonlinear method," Energy, Elsevier, vol. 201(C).
    9. Li, Junfu & Lai, Qingzhi & Wang, Lixin & Lyu, Chao & Wang, Han, 2016. "A method for SOC estimation based on simplified mechanistic model for LiFePO4 battery," Energy, Elsevier, vol. 114(C), pages 1266-1276.
    10. Liang, Jialin & Gan, Yunhua & Li, Yong & Tan, Meixian & Wang, Jianqin, 2019. "Thermal and electrochemical performance of a serially connected battery module using a heat pipe-based thermal management system under different coolant temperatures," Energy, Elsevier, vol. 189(C).
    11. Zhang, Xu & Wang, Yujie & Yang, Duo & Chen, Zonghai, 2016. "An on-line estimation of battery pack parameters and state-of-charge using dual filters based on pack model," Energy, Elsevier, vol. 115(P1), pages 219-229.
    12. Huang, Deyang & Chen, Ziqiang & Zheng, Changwen & Li, Haibin, 2019. "A model-based state-of-charge estimation method for series-connected lithium-ion battery pack considering fast-varying cell temperature," Energy, Elsevier, vol. 185(C), pages 847-861.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Qisong & Yang, Lin & Guo, Wenchao & Qiang, Jiaxi & Peng, Cheng & Li, Qinyi & Deng, Zhongwei, 2022. "A deep learning method for lithium-ion battery remaining useful life prediction based on sparse segment data via cloud computing system," Energy, Elsevier, vol. 241(C).
    2. Gao, Yizhao & Zhu, Chong & Zhang, Xi & Guo, Bangjun, 2021. "Implementation and evaluation of a practical electrochemical- thermal model of lithium-ion batteries for EV battery management system," Energy, Elsevier, vol. 221(C).
    3. Gu, Yuxuan & Wang, Jianxiao & Chen, Yuanbo & Xiao, Wei & Deng, Zhongwei & Chen, Qixin, 2023. "A simplified electro-chemical lithium-ion battery model applicable for in situ monitoring and online control," Energy, Elsevier, vol. 264(C).
    4. Lu, Xin & Chen, Ning & Li, Hui & Guo, Shiyu & Chen, Zengtao, 2023. "Simulation of the temperature distribution of lithium-ion battery module considering the time-delay effect of the porous electrodes," Energy, Elsevier, vol. 284(C).
    5. Mehta, Rohit & Gupta, Amit, 2024. "Mathematical modelling of electrochemical, thermal and degradation processes in lithium-ion cells—A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    6. Hao Fan & Lan Wang & Wei Chen & Bin Liu & Pengxin Wang, 2023. "A J-Type Air-Cooled Battery Thermal Management System Design and Optimization Based on the Electro-Thermal Coupled Model," Energies, MDPI, vol. 16(16), pages 1-19, August.
    7. S. Tamilselvi & S. Gunasundari & N. Karuppiah & Abdul Razak RK & S. Madhusudan & Vikas Madhav Nagarajan & T. Sathish & Mohammed Zubair M. Shamim & C. Ahamed Saleel & Asif Afzal, 2021. "A Review on Battery Modelling Techniques," Sustainability, MDPI, vol. 13(18), pages 1-26, September.
    8. Eapen, Deepa Elizabeth & Suresh, Resmi & Patil, Sairaj & Rengaswamy, Raghunathan, 2021. "A systems engineering perspective on electrochemical energy technologies and a framework for application driven choice of technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    9. Gao, Yizhao & Liu, Chenghao & Chen, Shun & Zhang, Xi & Fan, Guodong & Zhu, Chong, 2022. "Development and parameterization of a control-oriented electrochemical model of lithium-ion batteries for battery-management-systems applications," Applied Energy, Elsevier, vol. 309(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Zhongwei & Deng, Hao & Yang, Lin & Cai, Yishan & Zhao, Xiaowei, 2017. "Implementation of reduced-order physics-based model and multi-parameters identification strategy for lithium-ion battery," Energy, Elsevier, vol. 138(C), pages 509-519.
    2. Zhao, Xiaowei & Cai, Yishan & Yang, Lin & Deng, Zhongwei & Qiang, Jiaxi, 2017. "State of charge estimation based on a new dual-polarization-resistance model for electric vehicles," Energy, Elsevier, vol. 135(C), pages 40-52.
    3. Li, Changlong & Cui, Naxin & Wang, Chunyu & Zhang, Chenghui, 2021. "Reduced-order electrochemical model for lithium-ion battery with domain decomposition and polynomial approximation methods," Energy, Elsevier, vol. 221(C).
    4. Bian, Xiaolei & Liu, Longcheng & Yan, Jinying, 2019. "A model for state-of-health estimation of lithium ion batteries based on charging profiles," Energy, Elsevier, vol. 177(C), pages 57-65.
    5. Gao, Yizhao & Zhu, Chong & Zhang, Xi & Guo, Bangjun, 2021. "Implementation and evaluation of a practical electrochemical- thermal model of lithium-ion batteries for EV battery management system," Energy, Elsevier, vol. 221(C).
    6. Pan, Haihong & Lü, Zhiqiang & Lin, Weilong & Li, Junzi & Chen, Lin, 2017. "State of charge estimation of lithium-ion batteries using a grey extended Kalman filter and a novel open-circuit voltage model," Energy, Elsevier, vol. 138(C), pages 764-775.
    7. Ma, Mina & Wang, Yu & Duan, Qiangling & Wu, Tangqin & Sun, Jinhua & Wang, Qingsong, 2018. "Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis," Energy, Elsevier, vol. 164(C), pages 745-756.
    8. Li, Yanwen & Wang, Chao & Gong, Jinfeng, 2017. "A multi-model probability SOC fusion estimation approach using an improved adaptive unscented Kalman filter technique," Energy, Elsevier, vol. 141(C), pages 1402-1415.
    9. Simone Barcellona & Luigi Piegari, 2017. "Lithium Ion Battery Models and Parameter Identification Techniques," Energies, MDPI, vol. 10(12), pages 1-24, December.
    10. Ma, Yan & Ding, Hao & Liu, Yongqin & Gao, Jinwu, 2022. "Battery thermal management of intelligent-connected electric vehicles at low temperature based on NMPC," Energy, Elsevier, vol. 244(PA).
    11. Zhang, Qisong & Yang, Lin & Guo, Wenchao & Qiang, Jiaxi & Peng, Cheng & Li, Qinyi & Deng, Zhongwei, 2022. "A deep learning method for lithium-ion battery remaining useful life prediction based on sparse segment data via cloud computing system," Energy, Elsevier, vol. 241(C).
    12. Deng, Zhongwei & Yang, Lin & Deng, Hao & Cai, Yishan & Li, Dongdong, 2018. "Polynomial approximation pseudo-two-dimensional battery model for online application in embedded battery management system," Energy, Elsevier, vol. 142(C), pages 838-850.
    13. Deng, Zhongwei & Hu, Xiaosong & Lin, Xianke & Che, Yunhong & Xu, Le & Guo, Wenchao, 2020. "Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression," Energy, Elsevier, vol. 205(C).
    14. Mamun, A. & Sivasubramaniam, A. & Fathy, H.K., 2018. "Collective learning of lithium-ion aging model parameters for battery health-conscious demand response in datacenters," Energy, Elsevier, vol. 154(C), pages 80-95.
    15. Guo, Zengjia & Xu, Qidong & Wang, Yang & Zhao, Tianshou & Ni, Meng, 2023. "Battery thermal management system with heat pipe considering battery aging effect," Energy, Elsevier, vol. 263(PE).
    16. Sun, Daoming & Yu, Xiaoli & Wang, Chongming & Zhang, Cheng & Huang, Rui & Zhou, Quan & Amietszajew, Taz & Bhagat, Rohit, 2021. "State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator," Energy, Elsevier, vol. 214(C).
    17. Shrivastava, Prashant & Soon, Tey Kok & Idris, Mohd Yamani Idna Bin & Mekhilef, Saad, 2019. "Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    18. Xu, Meng & Wang, Xia & Zhang, Liwen & Zhao, Peng, 2021. "Comparison of the effect of linear and two-step fast charging protocols on degradation of lithium ion batteries," Energy, Elsevier, vol. 227(C).
    19. Astaneh, Majid & Andric, Jelena & Löfdahl, Lennart & Stopp, Peter, 2022. "Multiphysics simulation optimization framework for lithium-ion battery pack design for electric vehicle applications," Energy, Elsevier, vol. 239(PB).
    20. Gao, Yizhao & Liu, Chenghao & Chen, Shun & Zhang, Xi & Fan, Guodong & Zhu, Chong, 2022. "Development and parameterization of a control-oriented electrochemical model of lithium-ion batteries for battery-management-systems applications," Applied Energy, Elsevier, vol. 309(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:214:y:2021:i:c:s0360544220321642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.