IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v206y2020ics0360544220312627.html
   My bibliography  Save this article

Capacity fade characteristics of lithium iron phosphate cell during dynamic cycle

Author

Listed:
  • Yang, Yue
  • Chen, Lei
  • Yang, Lijun
  • Du, Xiaoze
  • Yang, Yongping

Abstract

As a key issue of electric vehicles, the capacity fade of lithium iron phosphate battery is closely related to solid electrolyte interphase growth and maximum temperature. In this study, a numerical method combining the electrochemical, capacity fading and heat transfer models is developed. The electrolyte interphase film growth, relative capacity and temperature change of lithium iron phosphate battery are obtained under various operating conditions during the charge-discharge cycles. The results show that the electrolyte interphase film thickness increases as the C rate rises and relative capacity decreases. The capacity loss is almost 19.7% when the C-rate rises from 0.5C to 2C after 2000 cycles. The thickness of electrolyte interphase film increases and relative capacity decreases when the ambient temperature goes up. A thicker negative electrode is adverse to the electrolyte interphase film growth, and leads to the increased relative capacity, while the influence of separator thickness can be negligible. The battery maximum temperature rises with increasing the C rate and initial temperature, which exceeds the safe upper limit when the ambient temperature increases to 318.15 K at 3C. By increasing the convective heat transfer coefficient, the maximum temperature can be reduced to the security value.

Suggested Citation

  • Yang, Yue & Chen, Lei & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2020. "Capacity fade characteristics of lithium iron phosphate cell during dynamic cycle," Energy, Elsevier, vol. 206(C).
  • Handle: RePEc:eee:energy:v:206:y:2020:i:c:s0360544220312627
    DOI: 10.1016/j.energy.2020.118155
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220312627
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118155?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Chia-Chin & Huang, Sin-Yi & Chen, Wei-Hsin, 2019. "Thermal and solid electrolyte interphase characterization of lithium-ion battery," Energy, Elsevier, vol. 174(C), pages 999-1011.
    2. Chen, Jingwei & E, Jiaqiang & Kang, Siyi & Zhao, Xiaohuan & Zhu, Hao & Deng, Yuanwang & Peng, Qingguo & Zhang, Zhiqing, 2019. "Modeling and characterization of the mass transfer and thermal mechanics of the power lithium manganate battery under charging process," Energy, Elsevier, vol. 187(C).
    3. Xu, Meng & Zhang, Zhuqian & Wang, Xia & Jia, Li & Yang, Lixin, 2015. "A pseudo three-dimensional electrochemical–thermal model of a prismatic LiFePO4 battery during discharge process," Energy, Elsevier, vol. 80(C), pages 303-317.
    4. Li, Xiaoyu & Yuan, Changgui & Wang, Zhenpo, 2020. "State of health estimation for Li-ion battery via partial incremental capacity analysis based on support vector regression," Energy, Elsevier, vol. 203(C).
    5. Saw, Lip Huat & Ye, Yonghuang & Yew, Ming Chian & Chong, Wen Tong & Yew, Ming Kun & Ng, Tan Ching, 2017. "Computational fluid dynamics simulation on open cell aluminium foams for Li-ion battery cooling system," Applied Energy, Elsevier, vol. 204(C), pages 1489-1499.
    6. Cicconi, Paolo & Landi, Daniele & Germani, Michele, 2017. "Thermal analysis and simulation of a Li-ion battery pack for a lightweight commercial EV," Applied Energy, Elsevier, vol. 192(C), pages 159-177.
    7. Li, Xiaoyu & Yuan, Changgui & Li, Xiaohui & Wang, Zhenpo, 2020. "State of health estimation for Li-Ion battery using incremental capacity analysis and Gaussian process regression," Energy, Elsevier, vol. 190(C).
    8. Zhao, Rui & Liu, Jie & Gu, Junjie, 2015. "The effects of electrode thickness on the electrochemical and thermal characteristics of lithium ion battery," Applied Energy, Elsevier, vol. 139(C), pages 220-229.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Zengjia & Xu, Qidong & Wang, Yang & Zhao, Tianshou & Ni, Meng, 2023. "Battery thermal management system with heat pipe considering battery aging effect," Energy, Elsevier, vol. 263(PE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Solai, Elie & Guadagnini, Maxime & Beaugendre, Héloïse & Daccord, Rémi & Congedo, Pietro, 2022. "Validation of a data-driven fast numerical model to simulate the immersion cooling of a lithium-ion battery pack," Energy, Elsevier, vol. 249(C).
    2. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    3. Zhang, Yajun & Liu, Yajie & Wang, Jia & Zhang, Tao, 2022. "State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression," Energy, Elsevier, vol. 239(PB).
    4. Li, Yong & Wang, Liye & Feng, Yanbiao & Liao, Chenglin & Yang, Jue, 2024. "An online state-of-health estimation method for lithium-ion battery based on linear parameter-varying modeling framework," Energy, Elsevier, vol. 298(C).
    5. Fu, Shiyi & Tao, Shengyu & Fan, Hongtao & He, Kun & Liu, Xutao & Tao, Yulin & Zuo, Junxiong & Zhang, Xuan & Wang, Yu & Sun, Yaojie, 2024. "Data-driven capacity estimation for lithium-ion batteries with feature matching based transfer learning method," Applied Energy, Elsevier, vol. 353(PA).
    6. Liu, Yunpeng & Hou, Bo & Ahmed, Moin & Mao, Zhiyu & Feng, Jiangtao & Chen, Zhongwei, 2024. "A hybrid deep learning approach for remaining useful life prediction of lithium-ion batteries based on discharging fragments," Applied Energy, Elsevier, vol. 358(C).
    7. Xu, Meng & Wang, Xia & Zhang, Liwen & Zhao, Peng, 2021. "Comparison of the effect of linear and two-step fast charging protocols on degradation of lithium ion batteries," Energy, Elsevier, vol. 227(C).
    8. Tang, Ting & Yuan, Huimei, 2022. "A hybrid approach based on decomposition algorithm and neural network for remaining useful life prediction of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    9. Shen, Dongxu & Wu, Lifeng & Kang, Guoqing & Guan, Yong & Peng, Zhen, 2021. "A novel online method for predicting the remaining useful life of lithium-ion batteries considering random variable discharge current," Energy, Elsevier, vol. 218(C).
    10. Shi, Mingjie & Xu, Jun & Lin, Chuanping & Mei, Xuesong, 2022. "A fast state-of-health estimation method using single linear feature for lithium-ion batteries," Energy, Elsevier, vol. 256(C).
    11. Ospina Agudelo, Brian & Zamboni, Walter & Monmasson, Eric, 2021. "Application domain extension of incremental capacity-based battery SoH indicators," Energy, Elsevier, vol. 234(C).
    12. Zhongwei Zhang & Dan Zhou & Neng Xiong & Qiao Zhu, 2021. "Non-Fragile H ∞ Nonlinear Observer for State of Charge Estimation of Lithium-Ion Battery Based on a Fractional-Order Model," Energies, MDPI, vol. 14(16), pages 1-17, August.
    13. Xu, Xinhai & Li, Wenzheng & Xu, Ben & Qin, Jiang, 2019. "Numerical study on a water cooling system for prismatic LiFePO4 batteries at abused operating conditions," Applied Energy, Elsevier, vol. 250(C), pages 404-412.
    14. Saw, Lip Huat & Poon, Hiew Mun & Thiam, Hui San & Cai, Zuansi & Chong, Wen Tong & Pambudi, Nugroho Agung & King, Yeong Jin, 2018. "Novel thermal management system using mist cooling for lithium-ion battery packs," Applied Energy, Elsevier, vol. 223(C), pages 146-158.
    15. Ruan, Haokai & Wei, Zhongbao & Shang, Wentao & Wang, Xuechao & He, Hongwen, 2023. "Artificial Intelligence-based health diagnostic of Lithium-ion battery leveraging transient stage of constant current and constant voltage charging," Applied Energy, Elsevier, vol. 336(C).
    16. Gao, Yizhao & Zhu, Chong & Zhang, Xi & Guo, Bangjun, 2021. "Implementation and evaluation of a practical electrochemical- thermal model of lithium-ion batteries for EV battery management system," Energy, Elsevier, vol. 221(C).
    17. De Vita, Armando & Maheshwari, Arpit & Destro, Matteo & Santarelli, Massimo & Carello, Massimiliana, 2017. "Transient thermal analysis of a lithium-ion battery pack comparing different cooling solutions for automotive applications," Applied Energy, Elsevier, vol. 206(C), pages 101-112.
    18. Sun, Tao & Wang, Shaoqing & Jiang, Sheng & Xu, Bowen & Han, Xuebing & Lai, Xin & Zheng, Yuejiu, 2022. "A cloud-edge collaborative strategy for capacity prognostic of lithium-ion batteries based on dynamic weight allocation and machine learning," Energy, Elsevier, vol. 239(PC).
    19. He, Tengfei & Zhang, Teng & Wang, Zhirong & Cai, Qiong, 2022. "A comprehensive numerical study on electrochemical-thermal models of a cylindrical lithium-ion battery during discharge process," Applied Energy, Elsevier, vol. 313(C).
    20. Zhao, Rui & Liu, Jie & Gu, Junjie, 2017. "A comprehensive study on Li-ion battery nail penetrations and the possible solutions," Energy, Elsevier, vol. 123(C), pages 392-401.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:206:y:2020:i:c:s0360544220312627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.