IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v36y2011i1p549-555.html
   My bibliography  Save this item

A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade heat into power

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Qiang Liu & Ran Chen & Xinliu Yang & Xiao Xiao, 2023. "Thermodynamic Analyses of Sub- and Supercritical ORCs Using R1234yf, R236ea and Their Mixtures as Working Fluids for Geothermal Power Generation," Energies, MDPI, vol. 16(15), pages 1-22, July.
  2. Vélez, Fredy & Segovia, José & Chejne, Farid & Antolín, Gregorio & Quijano, Ana & Carmen Martín, M., 2011. "Low temperature heat source for power generation: Exhaustive analysis of a carbon dioxide transcritical power cycle," Energy, Elsevier, vol. 36(9), pages 5497-5507.
  3. Sánchez, Carlos J.N. & da Silva, Alexandre K., 2018. "Technical and environmental analysis of transcritical Rankine cycles operating with numerous CO2 mixtures," Energy, Elsevier, vol. 142(C), pages 180-190.
  4. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
  5. Wang, Z.Q. & Zhou, N.J. & Guo, J. & Wang, X.Y., 2012. "Fluid selection and parametric optimization of organic Rankine cycle using low temperature waste heat," Energy, Elsevier, vol. 40(1), pages 107-115.
  6. Li, Jian & Peng, Xiayao & Yang, Zhen & Hu, Shuozhuo & Duan, Yuanyuan, 2022. "Design, improvements and applications of dual-pressure evaporation organic Rankine cycles: A review," Applied Energy, Elsevier, vol. 311(C).
  7. Li, Jian & Liu, Qiang & Duan, Yuanyuan & Yang, Zhen, 2017. "Performance analysis of organic Rankine cycles using R600/R601a mixtures with liquid-separated condensation," Applied Energy, Elsevier, vol. 190(C), pages 376-389.
  8. Kuo, Chi-Ron & Hsu, Sung-Wei & Chang, Kai-Han & Wang, Chi-Chuan, 2011. "Analysis of a 50kW organic Rankine cycle system," Energy, Elsevier, vol. 36(10), pages 5877-5885.
  9. Oyewunmi, Oyeniyi A. & Taleb, Aly I. & Haslam, Andrew J. & Markides, Christos N., 2016. "On the use of SAFT-VR Mie for assessing large-glide fluorocarbon working-fluid mixtures in organic Rankine cycles," Applied Energy, Elsevier, vol. 163(C), pages 263-282.
  10. Löffler, Michael, 2017. "Batch Processes in Heat Engines," Energy, Elsevier, vol. 125(C), pages 788-794.
  11. Kun-Hsien Lu & Hsiao-Wei D. Chiang & Pei-Jen Wang, 2022. "Sensitivity Analysis of Transcritical CO 2 Cycle Performance Regarding Isentropic Efficiencies of Turbomachinery for Low Temperature Heat Sources," Energies, MDPI, vol. 15(23), pages 1-18, November.
  12. Hu, Zheng & Chen, Yongping & Zhang, Chengbin, 2024. "Role of R717 blends in ocean thermal energy conversion organic Rankine cycle," Renewable Energy, Elsevier, vol. 221(C).
  13. Hong Gao & Chao Liu & Chao He & Xiaoxiao Xu & Shuangying Wu & Yourong Li, 2012. "Performance Analysis and Working Fluid Selection of a Supercritical Organic Rankine Cycle for Low Grade Waste Heat Recovery," Energies, MDPI, vol. 5(9), pages 1-15, August.
  14. Guo, T. & Wang, H.X. & Zhang, S.J., 2011. "Fluids and parameters optimization for a novel cogeneration system driven by low-temperature geothermal sources," Energy, Elsevier, vol. 36(5), pages 2639-2649.
  15. Saufi Sulaiman, M. & Singh, B. & Mohamed, W.A.N.W., 2019. "Experimental and theoretical study of thermoelectric generator waste heat recovery model for an ultra-low temperature PEM fuel cell powered vehicle," Energy, Elsevier, vol. 179(C), pages 628-646.
  16. Pan, Lisheng & Wang, Huaixin & Shi, Weixiu, 2012. "Performance analysis in near-critical conditions of organic Rankine cycle," Energy, Elsevier, vol. 37(1), pages 281-286.
  17. Jahedul Islam Chowdhury & Bao Kha Nguyen & David Thornhill & Yukun Hu & Payam Soulatiantork & Nazmiye Balta-Ozkan & Liz Varga, 2018. "Fuzzy Nonlinear Dynamic Evaporator Model in Supercritical Organic Rankine Cycle Waste Heat Recovery Systems," Energies, MDPI, vol. 11(4), pages 1-24, April.
  18. Wang, E.H. & Zhang, H.G. & Zhao, Y. & Fan, B.Y. & Wu, Y.T. & Mu, Q.H., 2012. "Performance analysis of a novel system combining a dual loop organic Rankine cycle (ORC) with a gasoline engine," Energy, Elsevier, vol. 43(1), pages 385-395.
  19. F. Tchanche, Bertrand & Pétrissans, M. & Papadakis, G., 2014. "Heat resources and organic Rankine cycle machines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1185-1199.
  20. Collings, Peter & Yu, Zhibin & Wang, Enhua, 2016. "A dynamic organic Rankine cycle using a zeotropic mixture as the working fluid with composition tuning to match changing ambient conditions," Applied Energy, Elsevier, vol. 171(C), pages 581-591.
  21. Erdogan, Anil & Colpan, Can Ozgur & Cakici, Duygu Melek, 2017. "Thermal design and analysis of a shell and tube heat exchanger integrating a geothermal based organic Rankine cycle and parabolic trough solar collectors," Renewable Energy, Elsevier, vol. 109(C), pages 372-391.
  22. Xie, Jian & Xu, Jinliang & Xing, Feng & Wang, Zixuan & Liu, Huan, 2014. "The phase separation concept condensation heat transfer in horizontal tubes for low-grade energy utilization," Energy, Elsevier, vol. 69(C), pages 787-800.
  23. Tchanche, Bertrand F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2011. "Low-grade heat conversion into power using organic Rankine cycles – A review of various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3963-3979.
  24. Li, Zhouhang & Tang, Guoli & Wu, Yuxin & Zhai, Yuling & Xu, Jianxin & Wang, Hua & Lu, Junfu, 2016. "Improved gas heaters for supercritical CO2 Rankine cycles: Considerations on forced and mixed convection heat transfer enhancement," Applied Energy, Elsevier, vol. 178(C), pages 126-141.
  25. Oyeniyi A. Oyewunmi & Christos N. Markides, 2016. "Thermo-Economic and Heat Transfer Optimization of Working-Fluid Mixtures in a Low-Temperature Organic Rankine Cycle System," Energies, MDPI, vol. 9(6), pages 1-21, June.
  26. Luo, Dong & Mahmoud, Ahmad & Cogswell, Frederick, 2015. "Evaluation of Low-GWP fluids for power generation with Organic Rankine Cycle," Energy, Elsevier, vol. 85(C), pages 481-488.
  27. Xiaoli Yu & Zhi Li & Yiji Lu & Rui Huang & Anthony Paul Roskilly, 2018. "Investigation of an Innovative Cascade Cycle Combining a Trilateral Cycle and an Organic Rankine Cycle (TLC-ORC) for Industry or Transport Application," Energies, MDPI, vol. 11(11), pages 1-22, November.
  28. Yao, Yecheng & Zhu, Qi’an & Li, Zhouhang, 2020. "Performance of helically coiled gas heaters in supercritical CO2 Rankine cycles: A detailed assessment under convective boundary condition," Energy, Elsevier, vol. 195(C).
  29. Liu, Chao & He, Chao & Gao, Hong & Xie, Hui & Li, Yourong & Wu, Shuangying & Xu, Jinliang, 2013. "The environmental impact of organic Rankine cycle for waste heat recovery through life-cycle assessment," Energy, Elsevier, vol. 56(C), pages 144-154.
  30. Antonelli, M. & Baccioli, A. & Francesconi, M. & Desideri, U. & Martorano, L., 2014. "Operating maps of a rotary engine used as an expander for micro-generation with various working fluids," Applied Energy, Elsevier, vol. 113(C), pages 742-750.
  31. Baccioli, A. & Antonelli, M. & Desideri, U., 2017. "Technical and economic analysis of organic flash regenerative cycles (OFRCs) for low temperature waste heat recovery," Applied Energy, Elsevier, vol. 199(C), pages 69-87.
  32. Astolfi, Marco & Romano, Matteo C. & Bombarda, Paola & Macchi, Ennio, 2014. "Binary ORC (organic Rankine cycles) power plants for the exploitation of medium–low temperature geothermal sources – Part A: Thermodynamic optimization," Energy, Elsevier, vol. 66(C), pages 423-434.
  33. Florian Heberle & Dieter Brüggemann, 2015. "Thermo-Economic Evaluation of Organic Rankine Cycles for Geothermal Power Generation Using Zeotropic Mixtures," Energies, MDPI, vol. 8(3), pages 1-28, March.
  34. Zhang, Ji & Zhang, Xiaomeng & Zhang, Zhixiang & Zhou, Peilin & Zhang, Yan & Yuan, Han, 2022. "Performance improvement of ocean thermal energy conversion organic Rankine cycle under temperature glide effect," Energy, Elsevier, vol. 246(C).
  35. Yin, Hebi & Sabau, Adrian S. & Conklin, James C. & McFarlane, Joanna & Qualls, A. Lou, 2013. "Mixtures of SF6–CO2 as working fluids for geothermal power plants," Applied Energy, Elsevier, vol. 106(C), pages 243-253.
  36. Florian Heberle & Dieter Brüggemann, 2016. "Thermo-Economic Analysis of Zeotropic Mixtures and Pure Working Fluids in Organic Rankine Cycles for Waste Heat Recovery," Energies, MDPI, vol. 9(4), pages 1-16, March.
  37. Lee, Ung & Kim, Kyeongsu & Han, Chonghun, 2014. "Design and optimization of multi-component organic rankine cycle using liquefied natural gas cryogenic exergy," Energy, Elsevier, vol. 77(C), pages 520-532.
  38. Liu, Qiang & Duan, Yuanyuan & Yang, Zhen, 2014. "Effect of condensation temperature glide on the performance of organic Rankine cycles with zeotropic mixture working fluids," Applied Energy, Elsevier, vol. 115(C), pages 394-404.
  39. Choi, In-Hwan & Lee, Sangick & Seo, Yutaek & Chang, Daejun, 2013. "Analysis and optimization of cascade Rankine cycle for liquefied natural gas cold energy recovery," Energy, Elsevier, vol. 61(C), pages 179-195.
  40. Hajabdollahi, Zahra & Hajabdollahi, Farzaneh & Tehrani, Mahdi & Hajabdollahi, Hassan, 2013. "Thermo-economic environmental optimization of Organic Rankine Cycle for diesel waste heat recovery," Energy, Elsevier, vol. 63(C), pages 142-151.
  41. Ajimotokan, H.A. & Sher, I., 2015. "Thermodynamic performance simulation and design optimisation of trilateral-cycle engines for waste heat recovery-to-power generation," Applied Energy, Elsevier, vol. 154(C), pages 26-34.
  42. Zhang, Lijun & Chennells, Michael & Xia, Xiaohua, 2018. "A power dispatch model for a ferrochrome plant heat recovery cogeneration system," Applied Energy, Elsevier, vol. 227(C), pages 180-189.
  43. Yang, Min-Hsiung, 2016. "Optimizations of the waste heat recovery system for a large marine diesel engine based on transcritical Rankine cycle," Energy, Elsevier, vol. 113(C), pages 1109-1124.
  44. Steffen, Michael & Löffler, Michael & Schaber, Karlheinz, 2013. "Efficiency of a new Triangle Cycle with flash evaporation in a piston engine," Energy, Elsevier, vol. 57(C), pages 295-307.
  45. Shu, Gequn & Gao, Yuanyuan & Tian, Hua & Wei, Haiqiao & Liang, Xingyu, 2014. "Study of mixtures based on hydrocarbons used in ORC (Organic Rankine Cycle) for engine waste heat recovery," Energy, Elsevier, vol. 74(C), pages 428-438.
  46. Jahedul Islam Chowdhury & Bao Kha Nguyen & David Thornhill, 2015. "Modelling of Evaporator in Waste Heat Recovery System using Finite Volume Method and Fuzzy Technique," Energies, MDPI, vol. 8(12), pages 1-20, December.
  47. Li, Chennan & Besarati, Saeb & Goswami, Yogi & Stefanakos, Elias & Chen, Huijuan, 2013. "Reverse osmosis desalination driven by low temperature supercritical organic rankine cycle," Applied Energy, Elsevier, vol. 102(C), pages 1071-1080.
  48. Xu, Jinliang & Liu, Chao, 2013. "Effect of the critical temperature of organic fluids on supercritical pressure Organic Rankine Cycles," Energy, Elsevier, vol. 63(C), pages 109-122.
  49. Kim, Sunjin & Kim, Min Soo & Kim, Minsung, 2020. "Parametric study and optimization of closed Brayton power cycle considering the charge amount of working fluid," Energy, Elsevier, vol. 198(C).
  50. Zhang, Cheng & Liu, Chao & Xu, Xiaoxiao & Li, Qibin & Wang, Shukun, 2019. "Energetic, exergetic, economic and environmental (4E) analysis and multi-factor evaluation method of low GWP fluids in trans-critical organic Rankine cycles," Energy, Elsevier, vol. 168(C), pages 332-345.
  51. Yue, Chen & Han, Dong & Pu, Wenhao & He, Weifeng, 2016. "Parametric analysis of a vehicle power and cooling/heating cogeneration system," Energy, Elsevier, vol. 115(P1), pages 800-810.
  52. Feng, Yongqiang & Hung, TzuChen & Zhang, Yaning & Li, Bingxi & Yang, Jinfu & Shi, Yang, 2015. "Performance comparison of low-grade ORCs (organic Rankine cycles) using R245fa, pentane and their mixtures based on the thermoeconomic multi-objective optimization and decision makings," Energy, Elsevier, vol. 93(P2), pages 2018-2029.
  53. Chen, Xiaoxue & Liu, Chao & Li, Qibin & Wang, Xurong & Wang, Shukun, 2020. "Dynamic behavior of supercritical organic Rankine cycle using zeotropic mixture working fluids," Energy, Elsevier, vol. 191(C).
  54. Shao, Long & Ma, Xinling & Wei, Xinli & Hou, Zhonglan & Meng, Xiangrui, 2017. "Design and experimental study of a small-sized organic Rankine cycle system under various cooling conditions," Energy, Elsevier, vol. 130(C), pages 236-245.
  55. Feili, Milad & Rostamzadeh, Hadi & Ghaebi, Hadi, 2022. "Thermo-mechanical energy level approach integrated with exergoeconomic optimization for realistic cost evaluation of a novel micro-CCHP system," Renewable Energy, Elsevier, vol. 190(C), pages 630-657.
  56. Li, You-Rong & Du, Mei-Tang & Wu, Chun-Mei & Wu, Shuang-Ying & Liu, Chao, 2014. "Potential of organic Rankine cycle using zeotropic mixtures as working fluids for waste heat recovery," Energy, Elsevier, vol. 77(C), pages 509-519.
  57. Zhai, Huixing & An, Qingsong & Shi, Lin & Lemort, Vincent & Quoilin, Sylvain, 2016. "Categorization and analysis of heat sources for organic Rankine cycle systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 790-805.
  58. Bao, Junjiang & Zhao, Li, 2012. "Exergy analysis and parameter study on a novel auto-cascade Rankine cycle," Energy, Elsevier, vol. 48(1), pages 539-547.
  59. Yu, Haoshui & Gundersen, Truls & Feng, Xiao, 2018. "Process integration of organic Rankine cycle (ORC) and heat pump for low temperature waste heat recovery," Energy, Elsevier, vol. 160(C), pages 330-340.
  60. Sarkar, Jahar, 2015. "Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 434-451.
  61. Liu, Qiang & Shen, Aijing & Duan, Yuanyuan, 2015. "Parametric optimization and performance analyses of geothermal organic Rankine cycles using R600a/R601a mixtures as working fluids," Applied Energy, Elsevier, vol. 148(C), pages 410-420.
  62. Baik, Young-Jin & Kim, Minsung & Chang, Ki-Chang & Lee, Young-Soo & Yoon, Hyung-Kee, 2012. "Power enhancement potential of a mixture transcritical cycle for a low-temperature geothermal power generation," Energy, Elsevier, vol. 47(1), pages 70-76.
  63. Sun, Xiaocun & Shi, Lingfeng & Tian, Hua & Wang, Xuan & Zhang, Yonghao & Yao, Yu & Sun, Rui & Shu, Gequn, 2022. "Analysis of an ideal composition tunable combined cooling and power cycle with CO2-based mixture," Energy, Elsevier, vol. 255(C).
  64. Liu, Wei & Meinel, Dominik & Gleinser, Moritz & Wieland, Christoph & Spliethoff, Hartmut, 2015. "Optimal Heat Source Temperature for thermodynamic optimization of sub-critical Organic Rankine Cycles," Energy, Elsevier, vol. 88(C), pages 897-906.
  65. Li, You-Rong & Du, Mei-Tang & Wu, Shuang-Ying & Peng, Lan & Liu, Chao, 2012. "Exergoeconomic analysis and optimization of a condenser for a binary mixture of vapors in organic Rankine cycle," Energy, Elsevier, vol. 40(1), pages 341-347.
  66. Moloney, Francesca & Almatrafi, Eydhah & Goswami, D.Y., 2020. "Working fluid parametric analysis for recuperative supercritical organic Rankine cycles for medium geothermal reservoir temperatures," Renewable Energy, Elsevier, vol. 147(P3), pages 2874-2881.
  67. Bao, Huashan & Ma, Zhiwei & Roskilly, Anthony Paul, 2016. "Integrated chemisorption cycles for ultra-low grade heat recovery and thermo-electric energy storage and exploitation," Applied Energy, Elsevier, vol. 164(C), pages 228-236.
  68. Nemati, Arash & Nami, Hossein & Yari, Mortaza, 2018. "Assessment of different configurations of solar energy driven organic flash cycles (OFCs) via exergy and exergoeconomic methodologies," Renewable Energy, Elsevier, vol. 115(C), pages 1231-1248.
  69. Le, Van Long & Feidt, Michel & Kheiri, Abdelhamid & Pelloux-Prayer, Sandrine, 2014. "Performance optimization of low-temperature power generation by supercritical ORCs (organic Rankine cycles) using low GWP (global warming potential) working fluids," Energy, Elsevier, vol. 67(C), pages 513-526.
  70. Miao, Zheng & Wang, Zhanbo & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Xu, Jinliang, 2023. "Development of selection criteria of zeotropic mixtures as working fluids for the trans-critical organic Rankine cycle," Energy, Elsevier, vol. 278(PA).
  71. Ram Mohan, Arun & Turaga, Uday & Shembekar, Vishakha & Elsworth, Derek & Pisupati, Sarma V., 2013. "Utilization of carbon dioxide from coal-based power plants as a heat transfer fluid for electricity generation in enhanced geothermal systems (EGS)," Energy, Elsevier, vol. 57(C), pages 505-512.
  72. Jin, Yunli & Gao, Naiping & Wang, Tiantian, 2020. "Influence of heat exchanger pinch point on the control strategy of Organic Rankine cycle (ORC)," Energy, Elsevier, vol. 207(C).
  73. Dai, Baomin & Li, Minxia & Ma, Yitai, 2014. "Thermodynamic analysis of carbon dioxide blends with low GWP (global warming potential) working fluids-based transcritical Rankine cycles for low-grade heat energy recovery," Energy, Elsevier, vol. 64(C), pages 942-952.
  74. Antonelli, Marco & Martorano, Luigi, 2012. "A study on the rotary steam engine for distributed generation in small size power plants," Applied Energy, Elsevier, vol. 97(C), pages 642-647.
  75. Unverdi, Murat & Cerci, Yunus, 2013. "Performance analysis of Germencik Geothermal Power Plant," Energy, Elsevier, vol. 52(C), pages 192-200.
  76. Li, Jian & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen, 2019. "Effects of heat source temperature and mixture composition on the combined superiority of dual-pressure evaporation organic Rankine cycle and zeotropic mixtures," Energy, Elsevier, vol. 174(C), pages 436-449.
  77. Xu, Weicong & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Mao, Samuel S., 2021. "Is zeotropic working fluid a promising option for organic Rankine cycle: A quantitative evaluation based on literature data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
  78. Song, Chongzhi & Gu, Mingyan & Miao, Zheng & Liu, Chao & Xu, Jinliang, 2019. "Effect of fluid dryness and critical temperature on trans-critical organic Rankine cycle," Energy, Elsevier, vol. 174(C), pages 97-109.
  79. Yung-Ming Li & Jane-Sunn Liaw & Chi-Chuan Wang, 2020. "A Criterion of Heat Transfer Deterioration for Supercritical Organic Fluids Flowing Upward and Its Heat Transfer Correlation," Energies, MDPI, vol. 13(4), pages 1-21, February.
  80. Yang, Min-Hsiung & Yeh, Rong-Hua & Hung, Tzu-Chen, 2017. "Thermo-economic analysis of the transcritical organic Rankine cycle using R1234yf/R32 mixtures as the working fluids for lower-grade waste heat recovery," Energy, Elsevier, vol. 140(P1), pages 818-836.
  81. Satanphol, K. & Pridasawas, W. & Suphanit, B., 2017. "A study on optimal composition of zeotropic working fluid in an Organic Rankine Cycle (ORC) for low grade heat recovery," Energy, Elsevier, vol. 123(C), pages 326-339.
  82. Hui-Xing, Zhai & Wei, Dong & Lin, Shi & Qing-Song, An & Sui-Lin, Wang & Bao-Lin, An, 2022. "Theoretical selection criteria of organic Rankine cycle form for different heat sources," Energy, Elsevier, vol. 238(PC).
  83. Yang, Kai & Zhang, Hongguang & Wang, Zhen & Zhang, Jian & Yang, Fubin & Wang, Enhua & Yao, Baofeng, 2013. "Study of zeotropic mixtures of ORC (organic Rankine cycle) under engine various operating conditions," Energy, Elsevier, vol. 58(C), pages 494-510.
  84. Zheng, Nan & Song, Weidong & Zhao, Li, 2013. "Theoretical and experimental investigations on the changing regularity of the extreme point of the temperature difference between zeotropic mixtures and heat transfer fluid," Energy, Elsevier, vol. 55(C), pages 541-552.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.