IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v102y2013icp1071-1080.html
   My bibliography  Save this article

Reverse osmosis desalination driven by low temperature supercritical organic rankine cycle

Author

Listed:
  • Li, Chennan
  • Besarati, Saeb
  • Goswami, Yogi
  • Stefanakos, Elias
  • Chen, Huijuan

Abstract

A supercritical organic rankine cycle (SORC) driven seawater reverse osmosis (RO) system (SORC-RO) is proposed. The proposed system is suitable for using both recirculating heat sources such as, solar thermal, and once-through thermal energy resources, such as, waste heat or geothermal. The SORC-RO system is analyzed using two types of low-grade heat sources with a maximum temperature of 150°C and compared with the conventional organic rankine cycle driven seawater reverse osmosis system (ORC-RO). The results show that the SORC-RO system is able to make use of different heat sources and provide relative stable performance. If the source is waste heat, the SORC-RO system could make full use of the heat source and reduce thermal pollution to the environment. A comprehensive list of working fluids candidates for the SORC-RO system using low-grade heat sources less than 150°C is proposed based on the critical pressure and temperature of the fluids.

Suggested Citation

  • Li, Chennan & Besarati, Saeb & Goswami, Yogi & Stefanakos, Elias & Chen, Huijuan, 2013. "Reverse osmosis desalination driven by low temperature supercritical organic rankine cycle," Applied Energy, Elsevier, vol. 102(C), pages 1071-1080.
  • Handle: RePEc:eee:appene:v:102:y:2013:i:c:p:1071-1080
    DOI: 10.1016/j.apenergy.2012.06.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912004734
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.06.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark A. Shannon & Paul W. Bohn & Menachem Elimelech & John G. Georgiadis & Benito J. Mariñas & Anne M. Mayes, 2008. "Science and technology for water purification in the coming decades," Nature, Nature, vol. 452(7185), pages 301-310, March.
    2. Tchanche, B.F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2010. "Exergy analysis of micro-organic Rankine power cycles for a small scale solar driven reverse osmosis desalination system," Applied Energy, Elsevier, vol. 87(4), pages 1295-1306, April.
    3. Kosmadakis, G. & Manolakos, D. & Kyritsis, S. & Papadakis, G., 2009. "Economic assessment of a two-stage solar organic Rankine cycle for reverse osmosis desalination," Renewable Energy, Elsevier, vol. 34(6), pages 1579-1586.
    4. Chang, Hsuan & Wang, Gow-Bin & Chen, Yih-Hang & Li, Chien-Chang & Chang, Cheng-Liang, 2010. "Modeling and optimization of a solar driven membrane distillation desalination system," Renewable Energy, Elsevier, vol. 35(12), pages 2714-2722.
    5. Kosmadakis, G. & Manolakos, D. & Papadakis, G., 2010. "Parametric theoretical study of a two-stage solar organic Rankine cycle for RO desalination," Renewable Energy, Elsevier, vol. 35(5), pages 989-996.
    6. Chen, Huijuan & Goswami, D. Yogi & Rahman, Muhammad M. & Stefanakos, Elias K., 2011. "A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade heat into power," Energy, Elsevier, vol. 36(1), pages 549-555.
    7. Quirin Schiermeier, 2008. "Water: Purification with a pinch of salt," Nature, Nature, vol. 452(7185), pages 260-261, March.
    8. Al-Qahtani, Haitham, 1996. "Feasibility of utilizing solar energy to power reverse osmosis domestic unit to desalinate water in the state of Bahrain," Renewable Energy, Elsevier, vol. 8(1), pages 500-504.
    9. Ayhan, Teoman & Al Madani, Hussain, 2010. "Feasibilty study of renewable energy powered seawater desalination technology using natural vacuum technique," Renewable Energy, Elsevier, vol. 35(2), pages 506-514.
    10. Abdelrassoul, Roshdy A., 1998. "Potential for economic solar desalination in the Middle East," Renewable Energy, Elsevier, vol. 14(1), pages 345-349.
    11. Chen, Huijuan & Yogi Goswami, D. & Rahman, Muhammad M. & Stefanakos, Elias K., 2011. "Energetic and exergetic analysis of CO2- and R32-based transcritical Rankine cycles for low-grade heat conversion," Applied Energy, Elsevier, vol. 88(8), pages 2802-2808, August.
    12. Nafey, A.S. & Sharaf, M.A., 2010. "Combined solar organic Rankine cycle with reverse osmosis desalination process: Energy, exergy, and cost evaluations," Renewable Energy, Elsevier, vol. 35(11), pages 2571-2580.
    13. Gude, Veera Gnaneswar & Nirmalakhandan, Nagamany & Deng, Shuguang, 2010. "Renewable and sustainable approaches for desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2641-2654, December.
    14. Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alhazmy, Majed M., 2014. "Economic and thermal feasibility of multi stage flash desalination plant with brine–feed mixing and cooling," Energy, Elsevier, vol. 76(C), pages 1029-1035.
    2. Araghi, Alireza Hosseini & Khiadani, Mehdi & Hooman, Kamel, 2016. "A novel vacuum discharge thermal energy combined desalination and power generation system utilizing R290/R600a," Energy, Elsevier, vol. 98(C), pages 215-224.
    3. Ziviani, Davide & Beyene, Asfaw & Venturini, Mauro, 2014. "Advances and challenges in ORC systems modeling for low grade thermal energy recovery," Applied Energy, Elsevier, vol. 121(C), pages 79-95.
    4. Han, D. & He, W.F. & Yue, C. & Pu, W.H., 2017. "Study on desalination of zero-emission system based on mechanical vapor compression," Applied Energy, Elsevier, vol. 185(P2), pages 1490-1496.
    5. Kai Yang & Hongguang Zhang & Songsong Song & Fubin Yang & Hao Liu & Guangyao Zhao & Jian Zhang & Baofeng Yao, 2014. "Effects of Degree of Superheat on the Running Performance of an Organic Rankine Cycle (ORC) Waste Heat Recovery System for Diesel Engines under Various Operating Conditions," Energies, MDPI, vol. 7(4), pages 1-23, April.
    6. Eveloy, Valerie & Rodgers, Peter & Al Alili, Ali, 2017. "Multi-objective optimization of a pressurized solid oxide fuel cell – gas turbine hybrid system integrated with seawater reverse osmosis," Energy, Elsevier, vol. 123(C), pages 594-614.
    7. Zhai, Huixing & An, Qingsong & Shi, Lin & Lemort, Vincent & Quoilin, Sylvain, 2016. "Categorization and analysis of heat sources for organic Rankine cycle systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 790-805.
    8. Liu, Qiang & Shen, Aijing & Duan, Yuanyuan, 2015. "Parametric optimization and performance analyses of geothermal organic Rankine cycles using R600a/R601a mixtures as working fluids," Applied Energy, Elsevier, vol. 148(C), pages 410-420.
    9. Moloney, Francesca & Almatrafi, Eydhah & Goswami, D.Y., 2020. "Working fluid parametric analysis for recuperative supercritical organic Rankine cycles for medium geothermal reservoir temperatures," Renewable Energy, Elsevier, vol. 147(P3), pages 2874-2881.
    10. Li, Zhouhang & Tang, Guoli & Wu, Yuxin & Zhai, Yuling & Xu, Jianxin & Wang, Hua & Lu, Junfu, 2016. "Improved gas heaters for supercritical CO2 Rankine cycles: Considerations on forced and mixed convection heat transfer enhancement," Applied Energy, Elsevier, vol. 178(C), pages 126-141.
    11. Li, Shuang-Fei & Liu, Zhen-Hua & Shao, Zhi-Xiong & Xiao, Hong-shen & Xia, Ning, 2018. "Performance study on a passive solar seawater desalination system using multi-effect heat recovery," Applied Energy, Elsevier, vol. 213(C), pages 343-352.
    12. Lai, Xiaotian & Long, Rui & Liu, Zhichun & Liu, Wei, 2018. "Stirling engine powered reverse osmosis for brackish water desalination to utilize moderate temperature heat," Energy, Elsevier, vol. 165(PA), pages 916-930.
    13. Calise, Francesco & Cappiello, Francesco Liberato & Vanoli, Raffaele & Vicidomini, Maria, 2019. "Economic assessment of renewable energy systems integrating photovoltaic panels, seawater desalination and water storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    14. Tashtoush, Bourhan & Alyahya, Wa'ed & Al Ghadi, Malak & Al-Omari, Jamal & Morosuk, Tatiana, 2023. "Renewable energy integration in water desalination: State-of-the-art review and comparative analysis," Applied Energy, Elsevier, vol. 352(C).
    15. Eveloy, Valérie & Rodgers, Peter & Qiu, Linyue, 2016. "Performance investigation of a power, heating and seawater desalination poly-generation scheme in an off-shore oil field," Energy, Elsevier, vol. 98(C), pages 26-39.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chennan & Goswami, Yogi & Stefanakos, Elias, 2013. "Solar assisted sea water desalination: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 136-163.
    2. Kasaeian, Alibakhsh & Rajaee, Fatemeh & Yan, Wei-Mon, 2019. "Osmotic desalination by solar energy: A critical review," Renewable Energy, Elsevier, vol. 134(C), pages 1473-1490.
    3. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    4. Wang, Hailei & Peterson, Richard & Herron, Tom, 2011. "Design study of configurations on system COP for a combined ORC (organic Rankine cycle) and VCC (vapor compression cycle)," Energy, Elsevier, vol. 36(8), pages 4809-4820.
    5. Shengjun, Zhang & Huaixin, Wang & Tao, Guo, 2011. "Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation," Applied Energy, Elsevier, vol. 88(8), pages 2740-2754, August.
    6. Vélez, Fredy & Segovia, José J. & Martín, M. Carmen & Antolín, Gregorio & Chejne, Farid & Quijano, Ana, 2012. "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4175-4189.
    7. Sarkar, Jahar, 2015. "Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 434-451.
    8. Dai, Baomin & Li, Minxia & Ma, Yitai, 2014. "Thermodynamic analysis of carbon dioxide blends with low GWP (global warming potential) working fluids-based transcritical Rankine cycles for low-grade heat energy recovery," Energy, Elsevier, vol. 64(C), pages 942-952.
    9. Song, Chongzhi & Gu, Mingyan & Miao, Zheng & Liu, Chao & Xu, Jinliang, 2019. "Effect of fluid dryness and critical temperature on trans-critical organic Rankine cycle," Energy, Elsevier, vol. 174(C), pages 97-109.
    10. Ghaebi, Hadi & Rostamzadeh, Hadi, 2020. "Performance comparison of two new cogeneration systems for freshwater and power production based on organic Rankine and Kalina cycles driven by salinity-gradient solar pond," Renewable Energy, Elsevier, vol. 156(C), pages 748-767.
    11. Sajid Ali & Fahad Al-Amri & Farooq Saeed, 2022. "Numerical and Experimental Performance Evaluation of a Photovoltaic Thermal Integrated Membrane Desalination System," Energies, MDPI, vol. 15(19), pages 1-20, October.
    12. Sharon, H. & Reddy, K.S., 2015. "A review of solar energy driven desalination technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1080-1118.
    13. Hajabdollahi, Zahra & Hajabdollahi, Farzaneh & Tehrani, Mahdi & Hajabdollahi, Hassan, 2013. "Thermo-economic environmental optimization of Organic Rankine Cycle for diesel waste heat recovery," Energy, Elsevier, vol. 63(C), pages 142-151.
    14. Al-Sulaiman, Fahad A. & Hamdullahpur, Feridun & Dincer, Ibrahim, 2012. "Performance assessment of a novel system using parabolic trough solar collectors for combined cooling, heating, and power production," Renewable Energy, Elsevier, vol. 48(C), pages 161-172.
    15. Le, Van Long & Feidt, Michel & Kheiri, Abdelhamid & Pelloux-Prayer, Sandrine, 2014. "Performance optimization of low-temperature power generation by supercritical ORCs (organic Rankine cycles) using low GWP (global warming potential) working fluids," Energy, Elsevier, vol. 67(C), pages 513-526.
    16. Tchanche, Bertrand F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2011. "Low-grade heat conversion into power using organic Rankine cycles – A review of various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3963-3979.
    17. Tashtoush, Bourhan & Alyahya, Wa'ed & Al Ghadi, Malak & Al-Omari, Jamal & Morosuk, Tatiana, 2023. "Renewable energy integration in water desalination: State-of-the-art review and comparative analysis," Applied Energy, Elsevier, vol. 352(C).
    18. Loni, Reyhaneh & Mahian, Omid & Markides, Christos N. & Bellos, Evangelos & le Roux, Willem G. & Kasaeian, Ailbakhsh & Najafi, Gholamhassan & Rajaee, Fatemeh, 2021. "A review of solar-driven organic Rankine cycles: Recent challenges and future outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    19. Xu, Jinliang & Liu, Chao, 2013. "Effect of the critical temperature of organic fluids on supercritical pressure Organic Rankine Cycles," Energy, Elsevier, vol. 63(C), pages 109-122.
    20. He, Chao & Liu, Chao & Zhou, Mengtong & Xie, Hui & Xu, Xiaoxiao & Wu, Shuangying & Li, Yourong, 2014. "A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources," Energy, Elsevier, vol. 68(C), pages 283-291.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:102:y:2013:i:c:p:1071-1080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.