IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v180y2019icp665-677.html
   My bibliography  Save this item

Comparison of clustering approaches for domestic electricity load profile characterisation - Implications for demand side management

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Alejandro Pena-Bello & Edward Barbour & Marta C. Gonzalez & Selin Yilmaz & Martin K. Patel & David Parra, 2020. "How Does the Electricity Demand Profile Impact the Attractiveness of PV-Coupled Battery Systems Combining Applications?," Energies, MDPI, vol. 13(15), pages 1-19, August.
  2. Alejandro Tristán & Flurina Heuberger & Alexander Sauer, 2020. "A Methodology to Systematically Identify and Characterize Energy Flexibility Measures in Industrial Systems," Energies, MDPI, vol. 13(22), pages 1-35, November.
  3. Al-Bahrani, Loau Tawfak & Horan, Ben & Seyedmahmoudian, Mehdi & Stojcevski, Alex, 2020. "Dynamic economic emission dispatch with load dema nd management for the load demand of electric vehicles during crest shaving and valley filling in smart cities environment," Energy, Elsevier, vol. 195(C).
  4. Matteo Caldera & Asad Hussain & Sabrina Romano & Valerio Re, 2023. "Energy-Consumption Pattern-Detecting Technique for Household Appliances for Smart Home Platform," Energies, MDPI, vol. 16(2), pages 1-23, January.
  5. Ahammed, Md. Tanvir & Khan, Imran, 2022. "Ensuring power quality and demand-side management through IoT-based smart meters in a developing country," Energy, Elsevier, vol. 250(C).
  6. Santiago Bañales & Raquel Dormido & Natividad Duro, 2021. "Smart Meters Time Series Clustering for Demand Response Applications in the Context of High Penetration of Renewable Energy Resources," Energies, MDPI, vol. 14(12), pages 1-22, June.
  7. Shi, Zhengyu & Wu, Libo & Zhou, Yang, 2023. "Predicting household energy consumption in an aging society," Applied Energy, Elsevier, vol. 352(C).
  8. Li, Jianbin & Chen, Zhiqiang & Cheng, Long & Liu, Xiufeng, 2022. "Energy data generation with Wasserstein Deep Convolutional Generative Adversarial Networks," Energy, Elsevier, vol. 257(C).
  9. Valdes, Javier & Masip Macia, Yunesky & Dorner, Wolfgang & Ramirez Camargo, Luis, 2021. "Unsupervised grouping of industrial electricity demand profiles: Synthetic profiles for demand-side management applications," Energy, Elsevier, vol. 215(PA).
  10. Li, Pei-Hao & Pye, Steve & Keppo, Ilkka, 2020. "Using clustering algorithms to characterise uncertain long-term decarbonisation pathways," Applied Energy, Elsevier, vol. 268(C).
  11. Li, Tong & Wang, Zhaohua & Zhao, Wenhui, 2022. "Comparison and application potential analysis of autoencoder-based electricity pattern mining algorithms for large-scale demand response," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
  12. Kang, J. & Reiner, D., 2021. "Identifying residential consumption patterns using data-mining techniques: A large-scale study of smart meter data in Chengdu, China," Cambridge Working Papers in Economics 2143, Faculty of Economics, University of Cambridge.
  13. Yilmaz, S. & Weber, S. & Patel, M.K., 2019. "Who is sensitive to DSM? Understanding the determinants of the shape of electricity load curves and demand shifting: Socio-demographic characteristics, appliance use and attitudes," Energy Policy, Elsevier, vol. 133(C).
  14. Zheng, Junjie & Lai, Chun Sing & Yuan, Haoliang & Dong, Zhao Yang & Meng, Ke & Lai, Loi Lei, 2020. "Electricity plan recommender system with electrical instruction-based recovery," Energy, Elsevier, vol. 203(C).
  15. Do-Hyeon Ryu & Ryu-Hee Kim & Seung-Hyun Choi & Kwang-Jae Kim & Young Myoung Ko & Young-Jin Kim & Minseok Song & Dong Gu Choi, 2020. "Utilizing Electricity Consumption Data to Assess the Noise Discomfort Caused by Electrical Appliances between Neighbors: A Case Study of a Campus Apartment Building," Sustainability, MDPI, vol. 12(20), pages 1-16, October.
  16. Kunatsa, Tawanda & Xia, Xiaohua, 2021. "Co-digestion of water hyacinth, municipal solid waste and cow dung: A methane optimised biogas–liquid petroleum gas hybrid system," Applied Energy, Elsevier, vol. 304(C).
  17. Mishra, Kakuli & Basu, Srinka & Maulik, Ujjwal, 2022. "Load profile mining using directed weighted graphs with application towards demand response management," Applied Energy, Elsevier, vol. 311(C).
  18. Troy Malatesta & Jessica K. Breadsell, 2022. "Identifying Home System of Practices for Energy Use with K-Means Clustering Techniques," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
  19. Ruhang, Xu, 2020. "Efficient clustering for aggregate loads: An unsupervised pretraining based method," Energy, Elsevier, vol. 210(C).
  20. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2020. "An Overview of Demand Response in Smart Grid and Optimization Techniques for Efficient Residential Appliance Scheduling Problem," Energies, MDPI, vol. 13(16), pages 1-31, August.
  21. Ng, Rong Wang & Begam, K.M. & Rajkumar, Rajprasad Kumar & Wong, Yee Wan & Chong, Lee Wai, 2022. "A novel dynamic two-stage controller of battery energy storage system for maximum demand reductions," Energy, Elsevier, vol. 248(C).
  22. Michalakopoulos, Vasilis & Sarmas, Elissaios & Papias, Ioannis & Skaloumpakas, Panagiotis & Marinakis, Vangelis & Doukas, Haris, 2024. "A machine learning-based framework for clustering residential electricity load profiles to enhance demand response programs," Applied Energy, Elsevier, vol. 361(C).
  23. Elissaios Sarmas & Afroditi Fragkiadaki & Vangelis Marinakis, 2024. "Explainable AI-Based Ensemble Clustering for Load Profiling and Demand Response," Energies, MDPI, vol. 17(22), pages 1-27, November.
  24. Liu, Yixing & Liu, Bo & Guo, Xiaoyu & Xu, Yiqiao & Ding, Zhengtao, 2023. "Household profile identification for retailers based on personalized federated learning," Energy, Elsevier, vol. 275(C).
  25. Walker, Shalika & Bergkamp, Vince & Yang, Dujuan & van Goch, T.A.J. & Katic, Katarina & Zeiler, Wim, 2021. "Improving energy self-sufficiency of a renovated residential neighborhood with heat pumps by analyzing smart meter data," Energy, Elsevier, vol. 229(C).
  26. Oveis Abedinia & Mehdi Bagheri, 2021. "Power Distribution Optimization Based on Demand Respond with Improved Multi-Objective Algorithm in Power System Planning," Energies, MDPI, vol. 14(10), pages 1-18, May.
  27. Jing, Rui & Li, Yubing & Wang, Meng & Chachuat, Benoit & Lin, Jianyi & Guo, Miao, 2021. "Coupling biogeochemical simulation and mathematical optimisation towards eco-industrial energy systems design," Applied Energy, Elsevier, vol. 290(C).
  28. Ahir, Rajesh K. & Chakraborty, Basab, 2023. "A data-driven analytic approach for investigation of electricity demand variability for energy conservation programs," Energy, Elsevier, vol. 282(C).
  29. Palaniappan, Somasundaram & Karuppannan, Sundararaju & Velusamy, Durgadevi, 2024. "Categorization of Indian residential consumers electrical energy consumption pattern using clustering and classification techniques," Energy, Elsevier, vol. 289(C).
  30. Ahir, Rajesh K. & Chakraborty, Basab, 2021. "A meta-analytic approach for determining the success factors for energy conservation," Energy, Elsevier, vol. 230(C).
  31. Banala Venkatesh & Padmini Sankaramurthy & Bharatiraja Chokkalingam & Lucian Mihet-Popa, 2022. "Managing the Demand in a Micro Grid Based on Load Shifting with Controllable Devices Using Hybrid WFS2ACSO Technique," Energies, MDPI, vol. 15(3), pages 1-25, January.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.