A data-driven analytic approach for investigation of electricity demand variability for energy conservation programs
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.128939
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wu, Junqi & Niu, Zhibin & Li, Xiang & Huang, Lizhen & Nielsen, Per Sieverts & Liu, Xiufeng, 2023. "Understanding multi-scale spatiotemporal energy consumption data: A visual analysis approach," Energy, Elsevier, vol. 263(PD).
- Yilmaz, S. & Weber, S. & Patel, M.K., 2019. "Who is sensitive to DSM? Understanding the determinants of the shape of electricity load curves and demand shifting: Socio-demographic characteristics, appliance use and attitudes," Energy Policy, Elsevier, vol. 133(C).
- Yilmaz, S. & Chambers, J. & Patel, M.K., 2019. "Comparison of clustering approaches for domestic electricity load profile characterisation - Implications for demand side management," Energy, Elsevier, vol. 180(C), pages 665-677.
- Roberts, Mike B. & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2019. "Characterisation of Australian apartment electricity demand and its implications for low-carbon cities," Energy, Elsevier, vol. 180(C), pages 242-257.
- Satre-Meloy, Aven & Diakonova, Marina & Grünewald, Philipp, 2020. "Cluster analysis and prediction of residential peak demand profiles using occupant activity data," Applied Energy, Elsevier, vol. 260(C).
- Chicco, Gianfranco, 2012. "Overview and performance assessment of the clustering methods for electrical load pattern grouping," Energy, Elsevier, vol. 42(1), pages 68-80.
- Qi, Ning & Cheng, Lin & Xu, Helin & Wu, Kuihua & Li, XuLiang & Wang, Yanshuo & Liu, Rui, 2020. "Smart meter data-driven evaluation of operational demand response potential of residential air conditioning loads," Applied Energy, Elsevier, vol. 279(C).
- Niu, Zhibin & Wu, Junqi & Liu, Xiufeng & Huang, Lizhen & Nielsen, Per Sieverts, 2021. "Understanding energy demand behaviors through spatio-temporal smart meter data analysis," Energy, Elsevier, vol. 226(C).
- Valdes, Javier & Masip Macia, Yunesky & Dorner, Wolfgang & Ramirez Camargo, Luis, 2021. "Unsupervised grouping of industrial electricity demand profiles: Synthetic profiles for demand-side management applications," Energy, Elsevier, vol. 215(PA).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Palaniappan, Somasundaram & Karuppannan, Sundararaju & Velusamy, Durgadevi, 2024. "Categorization of Indian residential consumers electrical energy consumption pattern using clustering and classification techniques," Energy, Elsevier, vol. 289(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ahammed, Md. Tanvir & Khan, Imran, 2022. "Ensuring power quality and demand-side management through IoT-based smart meters in a developing country," Energy, Elsevier, vol. 250(C).
- Valdes, Javier & Masip Macia, Yunesky & Dorner, Wolfgang & Ramirez Camargo, Luis, 2021. "Unsupervised grouping of industrial electricity demand profiles: Synthetic profiles for demand-side management applications," Energy, Elsevier, vol. 215(PA).
- Wen, Hanguan & Liu, Xiufeng & Yang, Ming & Lei, Bo & Cheng, Xu & Chen, Zhe, 2023. "An energy demand-side management and net metering decision framework," Energy, Elsevier, vol. 271(C).
- Jieyi Kang & David Reiner, 2021.
"Identifying residential consumption patterns using data-mining techniques: A large-scale study of smart meter data in Chengdu, China,"
Working Papers
EPRG2114, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
- Kang, J. & Reiner, D., 2021. "Identifying residential consumption patterns using data-mining techniques: A large-scale study of smart meter data in Chengdu, China," Cambridge Working Papers in Economics 2143, Faculty of Economics, University of Cambridge.
- Wen, Hanguan & Liu, Xiufeng & Yang, Ming & Lei, Bo & Xu, Cheng & Chen, Zhe, 2024. "A novel approach for identifying customer groups for personalized demand-side management services using household socio-demographic data," Energy, Elsevier, vol. 286(C).
- Michalakopoulos, Vasilis & Sarmas, Elissaios & Papias, Ioannis & Skaloumpakas, Panagiotis & Marinakis, Vangelis & Doukas, Haris, 2024. "A machine learning-based framework for clustering residential electricity load profiles to enhance demand response programs," Applied Energy, Elsevier, vol. 361(C).
- Alejandro Pena-Bello & Edward Barbour & Marta C. Gonzalez & Selin Yilmaz & Martin K. Patel & David Parra, 2020. "How Does the Electricity Demand Profile Impact the Attractiveness of PV-Coupled Battery Systems Combining Applications?," Energies, MDPI, vol. 13(15), pages 1-19, August.
- Li, Jianbin & Chen, Zhiqiang & Cheng, Long & Liu, Xiufeng, 2022. "Energy data generation with Wasserstein Deep Convolutional Generative Adversarial Networks," Energy, Elsevier, vol. 257(C).
- Zhang, Xiaohai & Ramírez-Mendiola, José Luis & Li, Mingtao & Guo, Liejin, 2022. "Electricity consumption pattern analysis beyond traditional clustering methods: A novel self-adapting semi-supervised clustering method and application case study," Applied Energy, Elsevier, vol. 308(C).
- Shi, Zhengyu & Wu, Libo & Zhou, Yang, 2023. "Predicting household energy consumption in an aging society," Applied Energy, Elsevier, vol. 352(C).
- Palaniappan, Somasundaram & Karuppannan, Sundararaju & Velusamy, Durgadevi, 2024. "Categorization of Indian residential consumers electrical energy consumption pattern using clustering and classification techniques," Energy, Elsevier, vol. 289(C).
- Xavier Serrano-Guerrero & Guillermo Escrivá-Escrivá & Santiago Luna-Romero & Jean-Michel Clairand, 2020. "A Time-Series Treatment Method to Obtain Electrical Consumption Patterns for Anomalies Detection Improvement in Electrical Consumption Profiles," Energies, MDPI, vol. 13(5), pages 1-23, February.
- Rongheng Lin & Budan Wu & Yun Su, 2018. "An Adaptive Weighted Pearson Similarity Measurement Method for Load Curve Clustering," Energies, MDPI, vol. 11(9), pages 1-17, September.
- Gianluca Trotta & Kirsten Gram-Hanssen & Pernille Lykke Jørgensen, 2020. "Heterogeneity of Electricity Consumption Patterns in Vulnerable Households," Energies, MDPI, vol. 13(18), pages 1-17, September.
- Aliakbari Sani, Sajad & Bahn, Olivier & Delage, Erick, 2022. "Affine decision rule approximation to address demand response uncertainty in smart Grids’ capacity planning," European Journal of Operational Research, Elsevier, vol. 303(1), pages 438-455.
- Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
- Kwonsik Song & Kyle Anderson & SangHyun Lee & Kaitlin T. Raimi & P. Sol Hart, 2020. "Non-Invasive Behavioral Reference Group Categorization Considering Temporal Granularity and Aggregation Level of Energy Use Data," Energies, MDPI, vol. 13(14), pages 1-21, July.
- Javed, Muhammad Shahzad & Jurasz, Jakub & McPherson, Madeleine & Dai, Yanjun & Ma, Tao, 2022. "Quantitative evaluation of renewable-energy-based remote microgrids: curtailment, load shifting, and reliability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
- Russo, Marianna & Bertsch, Valentin, 2020.
"A looming revolution: Implications of self-generation for the risk exposure of retailers,"
Energy Economics, Elsevier, vol. 92(C).
- Russo, Marianna & Bertsch, Valentin, 2018. "A looming revolution: Implications of self-generation for the risk exposure of retailers," Papers WP597, Economic and Social Research Institute (ESRI).
- Yamaguchi, Yohei & Shoda, Yuto & Yoshizawa, Shinya & Imai, Tatsuya & Perwez, Usama & Shimoda, Yoshiyuki & Hayashi, Yasuhiro, 2023. "Feasibility assessment of net zero-energy transformation of building stock using integrated synthetic population, building stock, and power distribution network framework," Applied Energy, Elsevier, vol. 333(C).
More about this item
Keywords
Clustering; Demand response; Demand variability; Energy conservation; Relative entropy; Smart grid;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223023332. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.