Identifying residential consumption patterns using data-mining techniques: A large-scale study of smart meter data in Chengdu, China
Author
Abstract
(This abstract was borrowed from another version of this item.)
Suggested Citation
Download full text from publisher
Other versions of this item:
- Kang, J. & Reiner, D., 2021. "Identifying residential consumption patterns using data-mining techniques: A large-scale study of smart meter data in Chengdu, China," Cambridge Working Papers in Economics 2143, Faculty of Economics, University of Cambridge.
References listed on IDEAS
- Fu, Xin & Zeng, Xiao-Jun & Feng, Pengpeng & Cai, Xiuwen, 2018. "Clustering-based short-term load forecasting for residential electricity under the increasing-block pricing tariffs in China," Energy, Elsevier, vol. 165(PB), pages 76-89.
- Viegas, Joaquim L. & Vieira, Susana M. & Melício, R. & Mendes, V.M.F. & Sousa, João M.C., 2016. "Classification of new electricity customers based on surveys and smart metering data," Energy, Elsevier, vol. 107(C), pages 804-817.
- Zheng, Xinye & Wei, Chu & Qin, Ping & Guo, Jin & Yu, Yihua & Song, Feng & Chen, Zhanming, 2014. "Characteristics of residential energy consumption in China: Findings from a household survey," Energy Policy, Elsevier, vol. 75(C), pages 126-135.
- Christoph Flath & David Nicolay & Tobias Conte & Clemens Dinther & Lilia Filipova-Neumann, 2012. "Cluster Analysis of Smart Metering Data," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 4(1), pages 31-39, February.
- Andersen, F.M. & Henningsen, G. & Møller, N.F. & Larsen, H.V., 2019. "Long-term projections of the hourly electricity consumption in Danish municipalities," Energy, Elsevier, vol. 186(C).
- Blázquez, Leticia & Boogen, Nina & Filippini, Massimo, 2013. "Residential electricity demand in Spain: New empirical evidence using aggregate data," Energy Economics, Elsevier, vol. 36(C), pages 648-657.
- Satre-Meloy, Aven, 2019. "Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models," Energy, Elsevier, vol. 174(C), pages 148-168.
- Räsänen, Teemu & Voukantsis, Dimitrios & Niska, Harri & Karatzas, Kostas & Kolehmainen, Mikko, 2010. "Data-based method for creating electricity use load profiles using large amount of customer-specific hourly measured electricity use data," Applied Energy, Elsevier, vol. 87(11), pages 3538-3545, November.
- Zhou, Kaile & Yang, Changhui & Shen, Jianxin, 2017. "Discovering residential electricity consumption patterns through smart-meter data mining: A case study from China," Utilities Policy, Elsevier, vol. 44(C), pages 73-84.
- Hausmann, J. A. & Kinnucan, M. & McFaddden, D., 1979. "A two-level electricity demand model : Evaluation of the connecticut time-of-day pricing test," Journal of Econometrics, Elsevier, vol. 10(3), pages 263-289, August.
- Zhou, Shaojie & Teng, Fei, 2013. "Estimation of urban residential electricity demand in China using household survey data," Energy Policy, Elsevier, vol. 61(C), pages 394-402.
- Rhodes, Joshua D. & Cole, Wesley J. & Upshaw, Charles R. & Edgar, Thomas F. & Webber, Michael E., 2014. "Clustering analysis of residential electricity demand profiles," Applied Energy, Elsevier, vol. 135(C), pages 461-471.
- Yilmaz, S. & Chambers, J. & Patel, M.K., 2019. "Comparison of clustering approaches for domestic electricity load profile characterisation - Implications for demand side management," Energy, Elsevier, vol. 180(C), pages 665-677.
- Afzalan, Milad & Jazizadeh, Farrokh, 2019. "Residential loads flexibility potential for demand response using energy consumption patterns and user segments," Applied Energy, Elsevier, vol. 254(C).
- Al-Wakeel, Ali & Wu, Jianzhong & Jenkins, Nick, 2016. "State estimation of medium voltage distribution networks using smart meter measurements," Applied Energy, Elsevier, vol. 184(C), pages 207-218.
- Rashid, Haroon & Singh, Pushpendra & Stankovic, Vladimir & Stankovic, Lina, 2019. "Can non-intrusive load monitoring be used for identifying an appliance’s anomalous behaviour?," Applied Energy, Elsevier, vol. 238(C), pages 796-805.
- Stankovic, L. & Stankovic, V. & Liao, J. & Wilson, C., 2016. "Measuring the energy intensity of domestic activities from smart meter data," Applied Energy, Elsevier, vol. 183(C), pages 1565-1580.
- Satre-Meloy, Aven & Diakonova, Marina & Grünewald, Philipp, 2020. "Cluster analysis and prediction of residential peak demand profiles using occupant activity data," Applied Energy, Elsevier, vol. 260(C).
- Chicco, Gianfranco, 2012. "Overview and performance assessment of the clustering methods for electrical load pattern grouping," Energy, Elsevier, vol. 42(1), pages 68-80.
- Murata, Akinobu & Kondou, Yasuhiko & Hailin, Mu & Weisheng, Zhou, 2008. "Electricity demand in the Chinese urban household-sector," Applied Energy, Elsevier, vol. 85(12), pages 1113-1125, December.
- Du, Gang & Lin, Wei & Sun, Chuanwang & Zhang, Dingzhong, 2015. "Residential electricity consumption after the reform of tiered pricing for household electricity in China," Applied Energy, Elsevier, vol. 157(C), pages 276-283.
- Hekkenberg, M. & Benders, R.M.J. & Moll, H.C. & Schoot Uiterkamp, A.J.M., 2009. "Indications for a changing electricity demand pattern: The temperature dependence of electricity demand in the Netherlands," Energy Policy, Elsevier, vol. 37(4), pages 1542-1551, April.
- Alberini, Anna & Prettico, Giuseppe & Shen, Chang & Torriti, Jacopo, 2019. "Hot weather and residential hourly electricity demand in Italy," Energy, Elsevier, vol. 177(C), pages 44-56.
- Mirasgedis, S. & Sarafidis, Y. & Georgopoulou, E. & Lalas, D.P. & Moschovits, M. & Karagiannis, F. & Papakonstantinou, D., 2006. "Models for mid-term electricity demand forecasting incorporating weather influences," Energy, Elsevier, vol. 31(2), pages 208-227.
- Atalla, Tarek N. & Hunt, Lester C., 2016. "Modelling residential electricity demand in the GCC countries," Energy Economics, Elsevier, vol. 59(C), pages 149-158.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gianluca Trotta & Kirsten Gram-Hanssen & Pernille Lykke Jørgensen, 2020. "Heterogeneity of Electricity Consumption Patterns in Vulnerable Households," Energies, MDPI, vol. 13(18), pages 1-17, September.
- Satre-Meloy, Aven & Diakonova, Marina & Grünewald, Philipp, 2020. "Cluster analysis and prediction of residential peak demand profiles using occupant activity data," Applied Energy, Elsevier, vol. 260(C).
- Rajabi, Amin & Eskandari, Mohsen & Ghadi, Mojtaba Jabbari & Li, Li & Zhang, Jiangfeng & Siano, Pierluigi, 2020. "A comparative study of clustering techniques for electrical load pattern segmentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
- Moral-Carcedo, Julián & Pérez-García, Julián, 2015.
"Temperature effects on firms’ electricity demand: An analysis of sectorial differences in Spain,"
Applied Energy, Elsevier, vol. 142(C), pages 407-425.
- Moral Carcedo, Julián & Pérez García, Julián, 2015. "Temperature Effects on Firms’ Electricity Demand: An Analysis of Sectorial Differences in Spain," Working Papers in Economic Theory 2015/01, Universidad Autónoma de Madrid (Spain), Department of Economic Analysis (Economic Theory and Economic History).
- Hu, Wenhao & Ho, Mun S. & Cao, Jing, 2019. "Energy consumption of urban households in China," China Economic Review, Elsevier, vol. 58(C).
- Li, Mingquan & Shan, Rui & Hernandez, Mauricio & Mallampalli, Varun & Patiño-Echeverri, Dalia, 2019. "Effects of population, urbanization, household size, and income on electric appliance adoption in the Chinese residential sector towards 2050," Applied Energy, Elsevier, vol. 236(C), pages 293-306.
- Trotta, Gianluca, 2020. "An empirical analysis of domestic electricity load profiles: Who consumes how much and when?," Applied Energy, Elsevier, vol. 275(C).
- Wen, Hanguan & Liu, Xiufeng & Yang, Ming & Lei, Bo & Xu, Cheng & Chen, Zhe, 2024. "A novel approach for identifying customer groups for personalized demand-side management services using household socio-demographic data," Energy, Elsevier, vol. 286(C).
- Sun, Chuanwang & Ouyang, Xiaoling, 2016. "Price and expenditure elasticities of residential energy demand during urbanization: An empirical analysis based on the household-level survey data in China," Energy Policy, Elsevier, vol. 88(C), pages 56-63.
- Lesley Thomson & David Jenkins, 2023. "The Use of Real Energy Consumption Data in Characterising Residential Energy Demand with an Inventory of UK Datasets," Energies, MDPI, vol. 16(16), pages 1-29, August.
- Yang, Ting & Ren, Minglun & Zhou, Kaile, 2018. "Identifying household electricity consumption patterns: A case study of Kunshan, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 861-868.
- Mario Flor & Sergio Herraiz & Ivan Contreras, 2021. "Definition of Residential Power Load Profiles Clusters Using Machine Learning and Spatial Analysis," Energies, MDPI, vol. 14(20), pages 1-15, October.
- Khanna, Nina Zheng & Guo, Jin & Zheng, Xinye, 2016. "Effects of demand side management on Chinese household electricity consumption: Empirical findings from Chinese household survey," Energy Policy, Elsevier, vol. 95(C), pages 113-125.
- Cansino, José M. & Dugo, Víctor & Gálvez-Ruiz, David & Román-Collado, Rocío, 2023. "What drove electricity consumption in the residential sector during the SARS-CoV-2 confinement? A special focus on university students in southern Spain," Energy, Elsevier, vol. 262(PB).
- Zhou, Kaile & Yang, Changhui & Shen, Jianxin, 2017. "Discovering residential electricity consumption patterns through smart-meter data mining: A case study from China," Utilities Policy, Elsevier, vol. 44(C), pages 73-84.
- Rongheng Lin & Budan Wu & Yun Su, 2018. "An Adaptive Weighted Pearson Similarity Measurement Method for Load Curve Clustering," Energies, MDPI, vol. 11(9), pages 1-17, September.
- Xie, Lunyu & Yan, Haosheng & Zhang, Shuhan & Wei, Chu, 2020.
"Does urbanization increase residential energy use? Evidence from the Chinese residential energy consumption survey 2012,"
China Economic Review, Elsevier, vol. 59(C).
- Xie, Lunyu & Wei, Chu, 2019. "Does Urbanization Increase Residential Energy Use? Evidence from the Chinese Residential Energy Consumption Survey 2012," EfD Discussion Paper 19-1, Environment for Development, University of Gothenburg.
- Shi, Zhengyu & Wu, Libo & Zhou, Yang, 2023. "Predicting household energy consumption in an aging society," Applied Energy, Elsevier, vol. 352(C).
- Lin, Boqiang & Wang, Yao, 2020. "Analyzing the elasticity and subsidy to reform the residential electricity tariffs in China," International Review of Economics & Finance, Elsevier, vol. 67(C), pages 189-206.
- Russo, Marianna & Bertsch, Valentin, 2020.
"A looming revolution: Implications of self-generation for the risk exposure of retailers,"
Energy Economics, Elsevier, vol. 92(C).
- Russo, Marianna & Bertsch, Valentin, 2018. "A looming revolution: Implications of self-generation for the risk exposure of retailers," Papers WP597, Economic and Social Research Institute (ESRI).
More about this item
Keywords
Residential electricity; household consumption behaviour; China; machine learning;All these keywords.
JEL classification:
- C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
- D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
- R22 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Household Analysis - - - Other Demand
- Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2021-08-30 (Big Data)
- NEP-ENE-2021-08-30 (Energy Economics)
- NEP-ISF-2021-08-30 (Islamic Finance)
- NEP-ORE-2021-08-30 (Operations Research)
- NEP-URE-2021-08-30 (Urban and Real Estate Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:enp:wpaper:eprg2114. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ruth Newman (email available below). General contact details of provider: https://edirc.repec.org/data/jicamuk.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.