IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v275y2023ics0360544223008253.html
   My bibliography  Save this article

Household profile identification for retailers based on personalized federated learning

Author

Listed:
  • Liu, Yixing
  • Liu, Bo
  • Guo, Xiaoyu
  • Xu, Yiqiao
  • Ding, Zhengtao

Abstract

With the deployment of smart meters, the retailer could obtain household profile information from massive data and implement demand response. However, different retailers in the retail market could not share the consumer’s electricity consumption data as these data are regarded as their own assets and cause the problem of data island. In the meanwhile, the electricity data are highly heterogeneous since different retailers may serve various consumers and retailers prefer to acquire personalized models. To this end, a personalized household profile identification framework based on federated learning is proposed, which could protect the retailer’s privacy and satisfy the individual requirement as well. Specifically, hypernetwork with an embedding layer is implemented on the server’s side as a personalized technique, where individual models are generated during the training process. Case studies show that the proposed method has similar performance to the conventional centralized training method even if privacy protection is considered and outperforms the method applying a traditional federated learning averaging algorithm. Besides, an experiment with a new retailer participation is designed and conducted to verify the effectiveness of the unique design in our method.

Suggested Citation

  • Liu, Yixing & Liu, Bo & Guo, Xiaoyu & Xu, Yiqiao & Ding, Zhengtao, 2023. "Household profile identification for retailers based on personalized federated learning," Energy, Elsevier, vol. 275(C).
  • Handle: RePEc:eee:energy:v:275:y:2023:i:c:s0360544223008253
    DOI: 10.1016/j.energy.2023.127431
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223008253
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127431?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yilmaz, S. & Chambers, J. & Patel, M.K., 2019. "Comparison of clustering approaches for domestic electricity load profile characterisation - Implications for demand side management," Energy, Elsevier, vol. 180(C), pages 665-677.
    2. Viegas, Joaquim L. & Vieira, Susana M. & Melício, R. & Mendes, V.M.F. & Sousa, João M.C., 2016. "Classification of new electricity customers based on surveys and smart metering data," Energy, Elsevier, vol. 107(C), pages 804-817.
    3. Shi, Renwei & Jiao, Zaibin, 2023. "Individual household demand response potential evaluation and identification based on machine learning algorithms," Energy, Elsevier, vol. 266(C).
    4. Cheng, Xu & Shi, Fan & Liu, Yongping & Liu, Xiufeng & Huang, Lizhen, 2022. "Wind turbine blade icing detection: a federated learning approach," Energy, Elsevier, vol. 254(PC).
    5. Frank, Lena & Rödder, Maximilian & Neef, Matthias & Adam, Mario, 2021. "Heating, ventilation, domestic appliances – An energy integrated system concept for the household of the future," Energy, Elsevier, vol. 234(C).
    6. Wang, Fei & Lu, Xiaoxing & Chang, Xiqiang & Cao, Xin & Yan, Siqing & Li, Kangping & Duić, Neven & Shafie-khah, Miadreza & Catalão, João P.S., 2022. "Household profile identification for behavioral demand response: A semi-supervised learning approach using smart meter data," Energy, Elsevier, vol. 238(PB).
    7. Nsangou, Jean Calvin & Kenfack, Joseph & Nzotcha, Urbain & Ngohe Ekam, Paul Salomon & Voufo, Joseph & Tamo, Thomas T., 2022. "Explaining household electricity consumption using quantile regression, decision tree and artificial neural network," Energy, Elsevier, vol. 250(C).
    8. Fernández, Joaquín Delgado & Menci, Sergio Potenciano & Lee, Chul Min & Rieger, Alexander & Fridgen, Gilbert, 2022. "Privacy-preserving federated learning for residential short-term load forecasting," Applied Energy, Elsevier, vol. 326(C).
    9. Shiraki, Hiroto & Nakamura, Shogo & Ashina, Shuichi & Honjo, Keita, 2016. "Estimating the hourly electricity profile of Japanese households – Coupling of engineering and statistical methods," Energy, Elsevier, vol. 114(C), pages 478-491.
    10. Tang, Wenjun & Wang, Hao & Lee, Xian-Long & Yang, Hong-Tzer, 2022. "Machine learning approach to uncovering residential energy consumption patterns based on socioeconomic and smart meter data," Energy, Elsevier, vol. 240(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Yongning & Pan, Shiji & Zhao, Yuan & Liao, Haohan & Ye, Lin & Zheng, Yingying, 2024. "Ultra-short-term wind power forecasting based on personalized robust federated learning with spatial collaboration," Energy, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Troy Malatesta & Jessica K. Breadsell, 2022. "Identifying Home System of Practices for Energy Use with K-Means Clustering Techniques," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
    2. Zheng, Xidong & Chen, Huangbin & Jin, Tao, 2024. "A new optimization approach considering demand response management and multistage energy storage: A novel perspective for Fujian Province," Renewable Energy, Elsevier, vol. 220(C).
    3. Ahammed, Md. Tanvir & Khan, Imran, 2022. "Ensuring power quality and demand-side management through IoT-based smart meters in a developing country," Energy, Elsevier, vol. 250(C).
    4. Palaniappan, Somasundaram & Karuppannan, Sundararaju & Velusamy, Durgadevi, 2024. "Categorization of Indian residential consumers electrical energy consumption pattern using clustering and classification techniques," Energy, Elsevier, vol. 289(C).
    5. Jieyi Kang & David Reiner, 2021. "Identifying residential consumption patterns using data-mining techniques: A large-scale study of smart meter data in Chengdu, China," Working Papers EPRG2114, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    6. Xie, Yutao & Xiao, Jiang-Wen & Wang, Yan-Wu & Dong, Jiale, 2024. "A new customer selection framework for time-based pricing program," Energy, Elsevier, vol. 290(C).
    7. Muhammad Fahim & Alberto Sillitti, 2019. "Analyzing Load Profiles of Energy Consumption to Infer Household Characteristics Using Smart Meters," Energies, MDPI, vol. 12(5), pages 1-15, February.
    8. Wen, Hanguan & Liu, Xiufeng & Yang, Ming & Lei, Bo & Xu, Cheng & Chen, Zhe, 2024. "A novel approach for identifying customer groups for personalized demand-side management services using household socio-demographic data," Energy, Elsevier, vol. 286(C).
    9. Gianluca Trotta & Kirsten Gram-Hanssen & Pernille Lykke Jørgensen, 2020. "Heterogeneity of Electricity Consumption Patterns in Vulnerable Households," Energies, MDPI, vol. 13(18), pages 1-17, September.
    10. Chen, Bingyang & Zeng, Xingjie & Zhang, Weishan & Fan, Lulu & Cao, Shaohua & Zhou, Jiehan, 2023. "Knowledge sharing-based multi-block federated learning for few-shot oil layer identification," Energy, Elsevier, vol. 283(C).
    11. Fang, Lei & He, Bin, 2023. "A deep learning framework using multi-feature fusion recurrent neural networks for energy consumption forecasting," Applied Energy, Elsevier, vol. 348(C).
    12. Weisser, Christoph & Lenel, Friederike & Lu, Yao & Kis-Katos, Krisztina & Kneib, Thomas, 2021. "Using solar panels for business purposes: Evidence based on high-frequency power usage data," University of Göttingen Working Papers in Economics 428, University of Goettingen, Department of Economics.
    13. Matteo Caldera & Asad Hussain & Sabrina Romano & Valerio Re, 2023. "Energy-Consumption Pattern-Detecting Technique for Household Appliances for Smart Home Platform," Energies, MDPI, vol. 16(2), pages 1-23, January.
    14. Wang, Bingkai & Sun, Wenlei & Wang, Hongwei & Xu, Tiantian & Zou, Yi, 2024. "Research on rapid calculation method of wind turbine blade strain for digital twin," Renewable Energy, Elsevier, vol. 221(C).
    15. Wang, Qiaochu & Ding, Yan & Kong, Xiangfei & Tian, Zhe & Xu, Linrui & He, Qing, 2022. "Load pattern recognition based optimization method for energy flexibility in office buildings," Energy, Elsevier, vol. 254(PC).
    16. Markovič, Rene & Gosak, Marko & Grubelnik, Vladimir & Marhl, Marko & Virtič, Peter, 2019. "Data-driven classification of residential energy consumption patterns by means of functional connectivity networks," Applied Energy, Elsevier, vol. 242(C), pages 506-515.
    17. Alexander Tureczek & Per Sieverts Nielsen & Henrik Madsen, 2018. "Electricity Consumption Clustering Using Smart Meter Data," Energies, MDPI, vol. 11(4), pages 1-18, April.
    18. Inoue, Nozomu & Matsumoto, Shigeru, 2019. "An examination of losses in energy savings after the Japanese Top Runner Program?," Energy Policy, Elsevier, vol. 124(C), pages 312-319.
    19. Anatolyy Dzyuba & Irina Solovyeva, 2020. "Price-based Demand-side Management Model for Industrial and Large Electricity Consumers," International Journal of Energy Economics and Policy, Econjournals, vol. 10(4), pages 135-149.
    20. Laib, I. & Hamidat, A. & Haddadi, M. & Ramzan, N. & Olabi, A.G., 2018. "Study and simulation of the energy performances of a grid-connected PV system supplying a residential house in north of Algeria," Energy, Elsevier, vol. 152(C), pages 445-454.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:275:y:2023:i:c:s0360544223008253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.