IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v195y2020ics0360544220300530.html
   My bibliography  Save this article

Dynamic economic emission dispatch with load dema nd management for the load demand of electric vehicles during crest shaving and valley filling in smart cities environment

Author

Listed:
  • Al-Bahrani, Loau Tawfak
  • Horan, Ben
  • Seyedmahmoudian, Mehdi
  • Stojcevski, Alex

Abstract

A multi-objective problem, namely, dynamic economic emission dispatch is simultaneously solved under several practical equality and inequality operating power constraints, while applying the load demand management (LDM) on 30,000 electric vehicles (EVs) during crest shaving and valley filling (CSVF) regions. A novel algorithm named orthogonal particle swarm optimization (OPSO) is proposed for such a problem. Ten thermal-generating units (TGUs) from power-generating systems (PGSs) in two Case Studies, with and without LDM on the load demand of 30,000 EVs, are tested. The comprehensive analysis results reveal that the quantity of emissions released by the 10 TGUs was remarkable affected and reduced around 4005 kg/day and the operating fuel cost was saved around $409/day when applying the LDM on the load demand of 30,000 EVs in the CSVF regions. This study provides important outcomes about the future operation of PGSs when applying the LDM strategy on a large-scale penetration of EVs in smart cities into a sustainable environment. The study outcomes contribute in making the PGS flexible, economical, environmental, stable, and reliable.

Suggested Citation

  • Al-Bahrani, Loau Tawfak & Horan, Ben & Seyedmahmoudian, Mehdi & Stojcevski, Alex, 2020. "Dynamic economic emission dispatch with load dema nd management for the load demand of electric vehicles during crest shaving and valley filling in smart cities environment," Energy, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:energy:v:195:y:2020:i:c:s0360544220300530
    DOI: 10.1016/j.energy.2020.116946
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220300530
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.116946?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Biswas, Partha P. & Suganthan, P.N. & Qu, B.Y. & Amaratunga, Gehan A.J., 2018. "Multiobjective economic-environmental power dispatch with stochastic wind-solar-small hydro power," Energy, Elsevier, vol. 150(C), pages 1039-1057.
    2. Tan, Kang Miao & Ramachandaramurthy, Vigna K. & Yong, Jia Ying, 2016. "Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 720-732.
    3. Yilmaz, S. & Chambers, J. & Patel, M.K., 2019. "Comparison of clustering approaches for domestic electricity load profile characterisation - Implications for demand side management," Energy, Elsevier, vol. 180(C), pages 665-677.
    4. Arul, R. & Velusami, S. & Ravi, G., 2015. "A new algorithm for combined dynamic economic emission dispatch with security constraints," Energy, Elsevier, vol. 79(C), pages 496-511.
    5. Gough, Rebecca & Dickerson, Charles & Rowley, Paul & Walsh, Chris, 2017. "Vehicle-to-grid feasibility: A techno-economic analysis of EV-based energy storage," Applied Energy, Elsevier, vol. 192(C), pages 12-23.
    6. Xiong, Guojiang & Shi, Dongyuan, 2018. "Hybrid biogeography-based optimization with brain storm optimization for non-convex dynamic economic dispatch with valve-point effects," Energy, Elsevier, vol. 157(C), pages 424-435.
    7. Meng, Anbo & Hu, Hanwu & Yin, Hao & Peng, Xiangang & Guo, Zhuangzhi, 2015. "Crisscross optimization algorithm for large-scale dynamic economic dispatch problem with valve-point effects," Energy, Elsevier, vol. 93(P2), pages 2175-2190.
    8. Li, Zhenhe & Khajepour, Amir & Song, Jinchun, 2019. "A comprehensive review of the key technologies for pure electric vehicles," Energy, Elsevier, vol. 182(C), pages 824-839.
    9. Muhammad, Bashir, 2019. "Energy consumption, CO2 emissions and economic growth in developed, emerging and Middle East and North Africa countries," Energy, Elsevier, vol. 179(C), pages 232-245.
    10. Zou, Dexuan & Li, Steven & Kong, Xiangyong & Ouyang, Haibin & Li, Zongyan, 2019. "Solving the combined heat and power economic dispatch problems by an improved genetic algorithm and a new constraint handling strategy," Applied Energy, Elsevier, vol. 237(C), pages 646-670.
    11. Jean-Michel Clairand & Javier Rodríguez-García & Carlos Álvarez-Bel, 2018. "Electric Vehicle Charging Strategy for Isolated Systems with High Penetration of Renewable Generation," Energies, MDPI, vol. 11(11), pages 1-21, November.
    12. Olamaei, Javad & Nazari, Mohammad Esmaeil & Bahravar, Sepideh, 2018. "Economic environmental unit commitment for integrated CCHP-thermal-heat only system with considerations for valve-point effect based on a heuristic optimization algorithm," Energy, Elsevier, vol. 159(C), pages 737-750.
    13. Bhattacharya, Mita & Awaworyi Churchill, Sefa & Paramati, Sudharshan Reddy, 2017. "The dynamic impact of renewable energy and institutions on economic output and CO2 emissions across regions," Renewable Energy, Elsevier, vol. 111(C), pages 157-167.
    14. Hoehne, Christopher G. & Chester, Mikhail V., 2016. "Optimizing plug-in electric vehicle and vehicle-to-grid charge scheduling to minimize carbon emissions," Energy, Elsevier, vol. 115(P1), pages 646-657.
    15. Alham, M.H. & Elshahed, M. & Ibrahim, Doaa Khalil & Abo El Zahab, Essam El Din, 2016. "A dynamic economic emission dispatch considering wind power uncertainty incorporating energy storage system and demand side management," Renewable Energy, Elsevier, vol. 96(PA), pages 800-811.
    16. Das, Ridoy & Wang, Yue & Putrus, Ghanim & Kotter, Richard & Marzband, Mousa & Herteleer, Bert & Warmerdam, Jos, 2020. "Multi-objective techno-economic-environmental optimisation of electric vehicle for energy services," Applied Energy, Elsevier, vol. 257(C).
    17. Nikoobakht, Ahmad & Aghaei, Jamshid & Khatami, Roohallah & Mahboubi-Moghaddam, Esmaeel & Parvania, Masood, 2019. "Stochastic flexible transmission operation for coordinated integration of plug-in electric vehicles and renewable energy sources," Applied Energy, Elsevier, vol. 238(C), pages 225-238.
    18. Shao, Changzheng & Ding, Yi & Wang, Jianhui, 2019. "A low-carbon economic dispatch model incorporated with consumption-side emission penalty scheme," Applied Energy, Elsevier, vol. 238(C), pages 1084-1092.
    19. Luin, Blaž & Petelin, Stojan & Al-Mansour, Fouad, 2019. "Microsimulation of electric vehicle energy consumption," Energy, Elsevier, vol. 174(C), pages 24-32.
    20. Abdelaziz, A.Y. & Ali, E.S. & Abd Elazim, S.M., 2016. "Implementation of flower pollination algorithm for solving economic load dispatch and combined economic emission dispatch problems in power systems," Energy, Elsevier, vol. 101(C), pages 506-518.
    21. Heuberger, Clara F. & Bains, Praveen K. & Mac Dowell, Niall, 2020. "The EV-olution of the power system: A spatio-temporal optimisation model to investigate the impact of electric vehicle deployment," Applied Energy, Elsevier, vol. 257(C).
    22. Singh, Diljinder & Dhillon, J.S., 2019. "Ameliorated grey wolf optimization for economic load dispatch problem," Energy, Elsevier, vol. 169(C), pages 398-419.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Zhi-Feng & Li, Ling-Ling & Liu, Yu-Wei & Liu, Jia-Qi & Li, Heng-Yi & Shen, Qiang, 2021. "Dynamic economic emission dispatch considering renewable energy generation: A novel multi-objective optimization approach," Energy, Elsevier, vol. 235(C).
    2. Chen, Jiahui & Wang, Fang & He, Xiaoyi & Liang, Xinyu & Huang, Junling & Zhang, Shaojun & Wu, Ye, 2022. "Emission mitigation potential from coordinated charging schemes for future private electric vehicles," Applied Energy, Elsevier, vol. 308(C).
    3. Kansal, Veenus & Dhillon, J.S., 2022. "Ameliorated artificial hummingbird algorithm for coordinated wind-solar-thermal generation scheduling problem in multiobjective framework," Applied Energy, Elsevier, vol. 326(C).
    4. SeyedGarmroudi, SeyedDavoud & Kayakutlu, Gulgun & Kayalica, M. Ozgur & Çolak, Üner, 2024. "Improved Pelican optimization algorithm for solving load dispatch problems," Energy, Elsevier, vol. 289(C).
    5. Pegah Alaee & Julius Bems & Amjad Anvari-Moghaddam, 2023. "A Review of the Latest Trends in Technical and Economic Aspects of EV Charging Management," Energies, MDPI, vol. 16(9), pages 1-28, April.
    6. Zhang, Qiang & Zou, Dexuan & Duan, Na, 2023. "An improved differential evolution using self-adaptable cosine similarity for economic emission dispatch," Energy, Elsevier, vol. 283(C).
    7. Neelamsetti Kirn Kumar & Rahul Sanmugam Gopi & Ramya Kuppusamy & Srete Nikolovski & Yuvaraja Teekaraman & Indragandhi Vairavasundaram & Siripireddy Venkateswarulu, 2022. "Fuzzy Logic-Based Load Frequency Control in an Island Hybrid Power System Model Using Artificial Bee Colony Optimization," Energies, MDPI, vol. 15(6), pages 1-20, March.
    8. Georgios Semertzidis & Dimitrios Stamatakis & Vasilios Tsalavoutis & Athanasios I. Tolis, 2022. "Optimized electric vehicle charging integrated in the unit commitment problem," Operational Research, Springer, vol. 22(5), pages 5137-5204, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Loau Al-Bahrani & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski, 2021. "Solving the Real Power Limitations in the Dynamic Economic Dispatch of Large-Scale Thermal Power Units under the Effects of Valve-Point Loading and Ramp-Rate Limitations," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    2. Raveendran, Visal & Alvarez-Bel, Carlos & Nair, Manjula G., 2020. "Assessing the ancillary service potential of electric vehicles to support renewable energy integration in touristic islands: A case study from Balearic island of Menorca," Renewable Energy, Elsevier, vol. 161(C), pages 495-509.
    3. El-Sayed, Wael T. & El-Saadany, Ehab F. & Zeineldin, Hatem H. & Al-Sumaiti, Ameena S., 2020. "Fast initialization methods for the nonconvex economic dispatch problem," Energy, Elsevier, vol. 201(C).
    4. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    5. Lefeng, Shi & Shengnan, Lv & Chunxiu, Liu & Yue, Zhou & Cipcigan, Liana & Acker, Thomas L., 2020. "A framework for electric vehicle power supply chain development," Utilities Policy, Elsevier, vol. 64(C).
    6. Yossi Hadad & Baruch Keren & Dima Alberg, 2023. "An Expert System for Ranking and Matching Electric Vehicles to Customer Specifications and Requirements," Energies, MDPI, vol. 16(11), pages 1-18, May.
    7. Brinkel, N.B.G. & Schram, W.L. & AlSkaif, T.A. & Lampropoulos, I. & van Sark, W.G.J.H.M., 2020. "Should we reinforce the grid? Cost and emission optimization of electric vehicle charging under different transformer limits," Applied Energy, Elsevier, vol. 276(C).
    8. Dehnavi, Ehsan & Abdi, Hamdi, 2016. "Optimal pricing in time of use demand response by integrating with dynamic economic dispatch problem," Energy, Elsevier, vol. 109(C), pages 1086-1094.
    9. Ahmed I. Omar & Ziad M. Ali & Mostafa Al-Gabalawy & Shady H. E. Abdel Aleem & Mujahed Al-Dhaifallah, 2020. "Multi-Objective Environmental Economic Dispatch of an Electricity System Considering Integrated Natural Gas Units and Variable Renewable Energy Sources," Mathematics, MDPI, vol. 8(7), pages 1-37, July.
    10. Panpan Mei & Lianghong Wu & Hongqiang Zhang & Zhenzu Liu, 2019. "A Hybrid Multi-Objective Crisscross Optimization for Dynamic Economic/Emission Dispatch Considering Plug-In Electric Vehicles Penetration," Energies, MDPI, vol. 12(20), pages 1-21, October.
    11. Bastida-Molina, Paula & Ribó-Pérez, David & Gómez-Navarro, Tomás & Hurtado-Pérez, Elías, 2022. "What is the problem? The obstacles to the electrification of urban mobility in Mediterranean cities. Case study of Valencia, Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    12. Kobashi, Takuro & Choi, Younghun & Hirano, Yujiro & Yamagata, Yoshiki & Say, Kelvin, 2022. "Rapid rise of decarbonization potentials of photovoltaics plus electric vehicles in residential houses over commercial districts," Applied Energy, Elsevier, vol. 306(PB).
    13. Jasmine Ramsebner & Albert Hiesl & Reinhard Haas, 2020. "Efficient Load Management for BEV Charging Infrastructure in Multi-Apartment Buildings," Energies, MDPI, vol. 13(22), pages 1-23, November.
    14. Guojiang Xiong & Jing Zhang & Xufeng Yuan & Dongyuan Shi & Yu He & Yao Yao & Gonggui Chen, 2018. "A Novel Method for Economic Dispatch with Across Neighborhood Search: A Case Study in a Provincial Power Grid, China," Complexity, Hindawi, vol. 2018, pages 1-18, November.
    15. Shin, Hansol & Kim, Tae Hyun & Kim, Hyoungtae & Lee, Sungwoo & Kim, Wook, 2019. "Environmental shutdown of coal-fired generators for greenhouse gas reduction: A case study of South Korea," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    16. Dai, Canyun & Hu, Zhongbo & Su, Qinghua, 2022. "An adaptive hybrid backtracking search optimization algorithm for dynamic economic dispatch with valve-point effects," Energy, Elsevier, vol. 239(PE).
    17. Heilmann, C. & Friedl, G., 2021. "Factors influencing the economic success of grid-to-vehicle and vehicle-to-grid applications—A review and meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    18. Patwal, Rituraj Singh & Narang, Nitin, 2020. "Multi-objective generation scheduling of integrated energy system using fuzzy based surrogate worth trade-off approach," Renewable Energy, Elsevier, vol. 156(C), pages 864-882.
    19. Daniele Menniti & Anna Pinnarelli & Nicola Sorrentino & Pasquale Vizza & Giovanni Brusco & Giuseppe Barone & Gianluca Marano, 2022. "Techno Economic Analysis of Electric Vehicle Grid Integration Aimed to Provide Network Flexibility Services in Italian Regulatory Framework," Energies, MDPI, vol. 15(7), pages 1-34, March.
    20. Azam, Anam & Ateeq, Muhammad & Shafique, Muhammad & Rafiq, Muhammad & Yuan, Jiahai, 2023. "Primary energy consumption-growth nexus: The role of natural resources, quality of government, and fixed capital formation," Energy, Elsevier, vol. 263(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:195:y:2020:i:c:s0360544220300530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.