Electricity plan recommender system with electrical instruction-based recovery
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2020.117775
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yilmaz, S. & Chambers, J. & Patel, M.K., 2019. "Comparison of clustering approaches for domestic electricity load profile characterisation - Implications for demand side management," Energy, Elsevier, vol. 180(C), pages 665-677.
- Xu, Fang Yuan & Zhang, Tao & Lai, Loi Lei & Zhou, Hao, 2015. "Shifting Boundary for price-based residential demand response and applications," Applied Energy, Elsevier, vol. 146(C), pages 353-370.
- Wen, Lulu & Zhou, Kaile & Yang, Shanlin & Li, Lanlan, 2018. "Compression of smart meter big data: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 59-69.
- Eissa, M.M., 2019. "Developing incentive demand response with commercial energy management system (CEMS) based on diffusion model, smart meters and new communication protocol," Applied Energy, Elsevier, vol. 236(C), pages 273-292.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Keda Pan & Changhong Xie & Chun Sing Lai & Dongxiao Wang & Loi Lei Lai, 2020. "Photovoltaic Output Power Estimation and Baseline Prediction Approach for a Residential Distribution Network with Behind-the-Meter Systems," Forecasting, MDPI, vol. 2(4), pages 1-18, November.
- Wang, Qiaochu & Ding, Yan & Kong, Xiangfei & Tian, Zhe & Xu, Linrui & He, Qing, 2022. "Load pattern recognition based optimization method for energy flexibility in office buildings," Energy, Elsevier, vol. 254(PC).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jia, Kunqi & Guo, Ge & Xiao, Jucheng & Zhou, Huan & Wang, Zhihua & He, Guangyu, 2019. "Data compression approach for the home energy management system," Applied Energy, Elsevier, vol. 247(C), pages 643-656.
- Liu, Bo & Hou, Yufan & Luan, Wenpeng & Liu, Zishuai & Chen, Sheng & Yu, Yixin, 2023. "A divide-and-conquer method for compression and reconstruction of smart meter data," Applied Energy, Elsevier, vol. 336(C).
- Hou, Langbo & Tong, Xi & Chen, Heng & Fan, Lanxin & Liu, Tao & Liu, Wenyi & Liu, Tong, 2024. "Optimized scheduling of smart community energy systems considering demand response and shared energy storage," Energy, Elsevier, vol. 295(C).
- Matteo Caldera & Asad Hussain & Sabrina Romano & Valerio Re, 2023. "Energy-Consumption Pattern-Detecting Technique for Household Appliances for Smart Home Platform," Energies, MDPI, vol. 16(2), pages 1-23, January.
- Herie Park, 2020. "Human Comfort-Based-Home Energy Management for Demand Response Participation," Energies, MDPI, vol. 13(10), pages 1-15, May.
- Katz, Jonas & Andersen, Frits Møller & Morthorst, Poul Erik, 2016. "Load-shift incentives for household demand response: Evaluation of hourly dynamic pricing and rebate schemes in a wind-based electricity system," Energy, Elsevier, vol. 115(P3), pages 1602-1616.
- Xiang, Yue & Cai, Hanhu & Gu, Chenghong & Shen, Xiaodong, 2020. "Cost-benefit analysis of integrated energy system planning considering demand response," Energy, Elsevier, vol. 192(C).
- Christodoulos Spagkakas & Dimitrios Stimoniaris & Dimitrios Tsiamitros, 2023. "Efficient Demand Side Management Using a Novel Decentralized Building Automation Algorithm," Energies, MDPI, vol. 16(19), pages 1-17, September.
- Al-Bahrani, Loau Tawfak & Horan, Ben & Seyedmahmoudian, Mehdi & Stojcevski, Alex, 2020. "Dynamic economic emission dispatch with load dema nd management for the load demand of electric vehicles during crest shaving and valley filling in smart cities environment," Energy, Elsevier, vol. 195(C).
- Li, Ke & Ye, Ning & Li, Shuzhen & Wang, Haiyang & Zhang, Chenghui, 2023. "Distributed collaborative operation strategies in multi-agent integrated energy system considering integrated demand response based on game theory," Energy, Elsevier, vol. 273(C).
- Ng, Rong Wang & Begam, K.M. & Rajkumar, Rajprasad Kumar & Wong, Yee Wan & Chong, Lee Wai, 2022. "A novel dynamic two-stage controller of battery energy storage system for maximum demand reductions," Energy, Elsevier, vol. 248(C).
- Michalakopoulos, Vasilis & Sarmas, Elissaios & Papias, Ioannis & Skaloumpakas, Panagiotis & Marinakis, Vangelis & Doukas, Haris, 2024. "A machine learning-based framework for clustering residential electricity load profiles to enhance demand response programs," Applied Energy, Elsevier, vol. 361(C).
- Sooyoung Jung & Yong Tae Yoon & Jun-Ho Huh, 2020. "An Efficient Micro Grid Optimization Theory," Mathematics, MDPI, vol. 8(4), pages 1-21, April.
- Alejandro Pena-Bello & Edward Barbour & Marta C. Gonzalez & Selin Yilmaz & Martin K. Patel & David Parra, 2020. "How Does the Electricity Demand Profile Impact the Attractiveness of PV-Coupled Battery Systems Combining Applications?," Energies, MDPI, vol. 13(15), pages 1-19, August.
- Li, Jianbin & Chen, Zhiqiang & Cheng, Long & Liu, Xiufeng, 2022. "Energy data generation with Wasserstein Deep Convolutional Generative Adversarial Networks," Energy, Elsevier, vol. 257(C).
- Alejandro Tristán & Flurina Heuberger & Alexander Sauer, 2020. "A Methodology to Systematically Identify and Characterize Energy Flexibility Measures in Industrial Systems," Energies, MDPI, vol. 13(22), pages 1-35, November.
- Stracqualursi, Erika & Rosato, Antonello & Di Lorenzo, Gianfranco & Panella, Massimo & Araneo, Rodolfo, 2023. "Systematic review of energy theft practices and autonomous detection through artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
- Troy Malatesta & Jessica K. Breadsell, 2022. "Identifying Home System of Practices for Energy Use with K-Means Clustering Techniques," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
- Raneen Younis & Andreas Reinhardt, 2020. "A Study on Fundamental Waveform Shapes in Microscopic Electrical Load Signatures," Energies, MDPI, vol. 13(12), pages 1-19, June.
- Luís Sousa Rodrigues & Daniel Lemos Marques & Jorge Augusto Ferreira & Vítor António Ferreira Costa & Nelson Dias Martins & Fernando José Neto Da Silva, 2022. "The Load Shifting Potential of Domestic Refrigerators in Smart Grids: A Comprehensive Review," Energies, MDPI, vol. 15(20), pages 1-36, October.
More about this item
Keywords
Matrix recovery; Low-rank recovery; Electricity plan recommender system;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:203:y:2020:i:c:s0360544220308823. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.