IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v103y2016icp758-771.html
   My bibliography  Save this item

Supercritical CO2 Brayton cycles for coal-fired power plants

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yao, Lichao & Zou, Zhengping, 2020. "A one-dimensional design methodology for supercritical carbon dioxide Brayton cycles: Integration of cycle conceptual design and components preliminary design," Applied Energy, Elsevier, vol. 276(C).
  2. Tong, Yongjing & Duan, Liqiang & Yang, Ming & Pang, Liping, 2022. "Design optimization of a new supercritical CO2 single reheat coal-fired power generation system," Energy, Elsevier, vol. 239(PB).
  3. Tong, Yongjing & Duan, Liqiang & Pang, Liping, 2021. "Off-design performance analysis of a new 300 MW supercritical CO2 coal-fired boiler," Energy, Elsevier, vol. 216(C).
  4. Chen, Zhewen & Wang, Yanjuan & Zhang, Xiaosong & Xu, Jinliang, 2020. "The energy-saving mechanism of coal-fired power plant with S–CO2 cycle compared to steam-Rankine cycle," Energy, Elsevier, vol. 195(C).
  5. Xu, Cheng & Zhang, Qiang & Yang, Zhiping & Li, Xiaosa & Xu, Gang & Yang, Yongping, 2018. "An improved supercritical coal-fired power generation system incorporating a supplementary supercritical CO2 cycle," Applied Energy, Elsevier, vol. 231(C), pages 1319-1329.
  6. Fangyi Li & Zhaoyang Ye & Xilin Xiao & Dawei Ma, 2019. "Environmental Benefits of Stock Evolution of Coal-Fired Power Generators in China," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
  7. Qi, Meng & Park, Jinwoo & Landon, Robert Stephen & Kim, Jeongdong & Liu, Yi & Moon, Il, 2022. "Continuous and flexible Renewable-Power-to-Methane via liquid CO2 energy storage: Revisiting the techno-economic potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
  8. Wang, Rui & Wang, Xuan & Bian, Xingyan & Zhang, Xuanang & Cai, Jinwen & Tian, Hua & Shu, Gequn & Wang, Mingtao, 2023. "An optimal split ratio in design and control of a recompression supercritical CO2 Brayton system," Energy, Elsevier, vol. 277(C).
  9. Song, Jian & Li, Xue-song & Ren, Xiao-dong & Gu, Chun-wei, 2018. "Performance analysis and parametric optimization of supercritical carbon dioxide (S-CO2) cycle with bottoming Organic Rankine Cycle (ORC)," Energy, Elsevier, vol. 143(C), pages 406-416.
  10. Lei, Xianliang & Zhang, Jun & Gou, Lingtong & Zhang, Qian & Li, Huixiong, 2019. "Experimental study on convection heat transfer of supercritical CO2 in small upward channels," Energy, Elsevier, vol. 176(C), pages 119-130.
  11. Binotti, Marco & Astolfi, Marco & Campanari, Stefano & Manzolini, Giampaolo & Silva, Paolo, 2017. "Preliminary assessment of sCO2 cycles for power generation in CSP solar tower plants," Applied Energy, Elsevier, vol. 204(C), pages 1007-1017.
  12. Bai, Ziwei & Zhang, Guoqiang & Li, Yongyi & Xu, Gang & Yang, Yongping, 2018. "A supercritical CO2 Brayton cycle with a bleeding anabranch used in coal-fired power plants," Energy, Elsevier, vol. 142(C), pages 731-738.
  13. Osorio, Julian D. & Hovsapian, Rob & Ordonez, Juan C., 2016. "Effect of multi-tank thermal energy storage, recuperator effectiveness, and solar receiver conductance on the performance of a concentrated solar supercritical CO2-based power plant operating under di," Energy, Elsevier, vol. 115(P1), pages 353-368.
  14. Liu, Xuejiao & Zhong, Wenqi & Li, Pingjiao & Xiang, Jun & Liu, Guoyao, 2019. "Design and performance analysis of coal-fired fluidized bed for supercritical CO2 power cycle," Energy, Elsevier, vol. 176(C), pages 468-478.
  15. Nematollahi, Maryam & Sadeghi, Sadegh & Rasam, Hamed & Bidabadi, Mehdi, 2020. "Analytical modelling of counter-flow non-premixed combustion of coal particles under non-adiabatic conditions taking into account trajectory of particles," Energy, Elsevier, vol. 192(C).
  16. Wang, Di & Xie, Xinyan & Wang, Chaonan & Zhou, Yunlong & Yang, Mei & Li, Xiaoli & Liu, Deying, 2021. "Thermo-economic analysis on an improved coal-fired power system integrated with S–CO2 brayton cycle," Energy, Elsevier, vol. 220(C).
  17. Xu, Cheng & Li, Xiaosa & Xin, Tuantuan & Liu, Xin & Xu, Gang & Wang, Min & Yang, Yongping, 2019. "A thermodynamic analysis and economic assessment of a modified de-carbonization coal-fired power plant incorporating a supercritical CO2 power cycle and an absorption heat transformer," Energy, Elsevier, vol. 179(C), pages 30-45.
  18. Ma, Teng & Li, Ming-Jia & Xu, Jin-Liang & Cao, Feng, 2019. "Thermodynamic analysis and performance prediction on dynamic response characteristic of PCHE in 1000 MW S-CO2 coal fired power plant," Energy, Elsevier, vol. 175(C), pages 123-138.
  19. Xin, Tuantuan & Xu, Cheng & Yang, Yongping & Kindra, Vladimir & Rogalev, Andrey, 2023. "A new process splitting analytical method for the coal-based Allam cycle: Thermodynamic assessment and process integration," Energy, Elsevier, vol. 267(C).
  20. Zhou, Jing & Zhu, Meng & Chen, Lei & Ren, Qiangqiang & Su, Sheng & Hu, Song & Wang, Yi & Xiang, Jun, 2023. "Performance assessment and system optimization on supercritical CO2 double-path recompression coal-fired combined heat and power plants with MEA-based post-combustion CO2 capture," Energy, Elsevier, vol. 267(C).
  21. Park, Joo Hyun & Park, Hyun Sun & Kwon, Jin Gyu & Kim, Tae Ho & Kim, Moo Hwan, 2018. "Optimization and thermodynamic analysis of supercritical CO2 Brayton recompression cycle for various small modular reactors," Energy, Elsevier, vol. 160(C), pages 520-535.
  22. Liao, Gaoliang & E, Jiaqiang & Zhang, Feng & Chen, Jingwei & Leng, Erwei, 2020. "Advanced exergy analysis for Organic Rankine Cycle-based layout to recover waste heat of flue gas," Applied Energy, Elsevier, vol. 266(C).
  23. Zhao, Bingtao & Yao, Jiacheng & Su, Yaxin, 2023. "Performance response to operating-load fluctuations for Sub-megawatt-scale recuperated supercritical CO2 Brayton cycles: Characteristics and improvement," Renewable Energy, Elsevier, vol. 206(C), pages 686-693.
  24. Andrey Rogalev & Vladimir Kindra & Ivan Komarov & Sergey Osipov & Olga Zlyvko, 2021. "Structural and Parametric Optimization of S-CO 2 Thermal Power Plants with a Pulverized Coal-Fired Boiler Operating in Russia," Energies, MDPI, vol. 14(21), pages 1-20, November.
  25. Jeong, Yongju & Son, Seongmin & Cho, Seong Kuk & Baik, Seungjoon & Lee, Jeong Ik, 2020. "Evaluation of supercritical CO2 compressor off-design performance prediction methods," Energy, Elsevier, vol. 213(C).
  26. Saeed, Muhammad & Kim, Man-Hoe, 2022. "A newly proposed supercritical carbon dioxide Brayton cycle configuration to enhance energy sources integration capability," Energy, Elsevier, vol. 239(PA).
  27. Luo, Kun & Zhao, Chunguang & Wen, Xu & Gao, Zhengwei & Bai, Yun & Xing, Jiangkuan & Fan, Jianren, 2019. "A priori study of an extended flamelet/progress variable model for NO prediction in pulverized coal flames," Energy, Elsevier, vol. 175(C), pages 768-780.
  28. Kim, Sunjin & Kim, Min Soo & Kim, Minsung, 2020. "Parametric study and optimization of closed Brayton power cycle considering the charge amount of working fluid," Energy, Elsevier, vol. 198(C).
  29. Wang, Lin & Pan, Liang-ming & Wang, Junfeng & Chen, Deqi & Huang, Yanping & Hu, Lian, 2019. "Investigation on the temperature sensitivity of the S-CO2 Brayton cycle efficiency," Energy, Elsevier, vol. 178(C), pages 739-750.
  30. Olumayegun, Olumide & Wang, Meihong & Oko, Eni, 2019. "Thermodynamic performance evaluation of supercritical CO2 closed Brayton cycles for coal-fired power generation with solvent-based CO2 capture," Energy, Elsevier, vol. 166(C), pages 1074-1088.
  31. Niu, Xiaojuan & Ma, Ning & Bu, Zhengkun & Hong, Wenpeng & Li, Haoran, 2022. "Thermodynamic analysis of supercritical Brayton cycles using CO2-based binary mixtures for solar power tower system application," Energy, Elsevier, vol. 254(PA).
  32. Li, Hongzhi & Zhang, Yifan & Yao, Mingyu & Yang, Yu & Han, Wanlong & Bai, Wengang, 2019. "Design assessment of a 5 MW fossil-fired supercritical CO2 power cycle pilot loop," Energy, Elsevier, vol. 174(C), pages 792-804.
  33. Wang, Xuan & Cai, Jinwen & Lin, Zhimin & Tian, Hua & Shu, Gequn & Wang, Rui & Bian, Xingyan & Shi, Lingfeng, 2022. "Dynamic simulation study of the start-up and shutdown processes for a recompression CO2 Brayton cycle," Energy, Elsevier, vol. 259(C).
  34. Muhammad, Hafiz Ali & Cho, Junhyun & Cho, Jongjae & Choi, Bongsu & Roh, Chulwoo & Ishfaq, Hafiz Ahmad & Lee, Gilbong & Shin, Hyungki & Baik, Young-Jin & Lee, Beomjoon, 2022. "Performance improvement of supercritical carbon dioxide power cycle at elevated heat sink temperatures," Energy, Elsevier, vol. 239(PD).
  35. Bai, Wengang & Li, Hongzhi & Zhang, Lei & Zhang, Yifan & Yang, Yu & Zhang, Chun & Yao, Mingyu, 2021. "Energy and exergy analyses of an improved recompression supercritical CO2 cycle for coal-fired power plant," Energy, Elsevier, vol. 222(C).
  36. Li, Zhaozhi & Shao, Yingjuan & Zhong, Wenqi & Liu, Hao, 2023. "Optimal design and thermodynamic evaluation of supercritical CO2 oxy-coal circulating fluidized bed power generation systems," Energy, Elsevier, vol. 277(C).
  37. Son, Seongmin & Lee, Jeong Ik, 2018. "Application of adjoint sensitivity analysis method to supercritical CO2 power cycle optimization," Energy, Elsevier, vol. 147(C), pages 1153-1164.
  38. Fan, Y.H. & Tang, G.H. & Li, X.L. & Yang, D.L. & Wang, S.Q., 2019. "Correlation evaluation on circumferentially average heat transfer for supercritical carbon dioxide in non-uniform heating vertical tubes," Energy, Elsevier, vol. 170(C), pages 480-496.
  39. Santini, Lorenzo & Accornero, Carlo & Cioncolini, Andrea, 2016. "On the adoption of carbon dioxide thermodynamic cycles for nuclear power conversion: A case study applied to Mochovce 3 Nuclear Power Plant," Applied Energy, Elsevier, vol. 181(C), pages 446-463.
  40. Yang, D.L. & Tang, G.H. & Fan, Y.H. & Li, X.L. & Wang, S.Q., 2020. "Arrangement and three-dimensional analysis of cooling wall in 1000 MW S–CO2 coal-fired boiler," Energy, Elsevier, vol. 197(C).
  41. Bai, Wengang & Li, Hongzhi & Zhang, Xuwei & Qiao, Yongqiang & Zhang, Chun & Gao, Wei & Yao, Mingyu, 2022. "Thermodynamic analysis of CO2–SF6 mixture working fluid supercritical Brayton cycle used for solar power plants," Energy, Elsevier, vol. 261(PB).
  42. Fan, Y.H. & Yang, D.L. & Tang, G.H. & Sheng, Q. & Li, X.L., 2022. "Design of S–CO2 coal-fired power system based on the multiscale analysis platform," Energy, Elsevier, vol. 240(C).
  43. Li, X.L. & Li, G.X. & Tang, G.H. & Fan, Y.H. & Yang, D.L., 2023. "A generalized thermal deviation factor to evaluate the comprehensive stress of tubes under non-uniform heating," Energy, Elsevier, vol. 263(PA).
  44. Olumayegun, Olumide & Wang, Meihong & Kelsall, Greg, 2017. "Thermodynamic analysis and preliminary design of closed Brayton cycle using nitrogen as working fluid and coupled to small modular Sodium-cooled fast reactor (SM-SFR)," Applied Energy, Elsevier, vol. 191(C), pages 436-453.
  45. Wang, Shengpeng & Zhang, Yifan & Li, Hongzhi & Yao, Mingyu & Peng, Botao & Yan, Junjie, 2020. "Thermohydrodynamic analysis of the vertical gas wall and reheat gas wall in a 300 MW supercritical CO2 boiler," Energy, Elsevier, vol. 211(C).
  46. Kondaiah, P. & Pitchumani, R., 2023. "Progress and opportunities in corrosion mitigation in heat transfer fluids for next-generation concentrating solar power," Renewable Energy, Elsevier, vol. 205(C), pages 956-991.
  47. Correa, Faustino & Barraza, Rodrigo & Soo Too, Yen Chean & Vasquez Padilla, Ricardo & Cardemil, José M., 2021. "Optimized operation of recompression sCO2 Brayton cycle based on adjustable recompression fraction under variable conditions," Energy, Elsevier, vol. 227(C).
  48. Kunniyoor, Vijayaraj & Singh, Punit & Nadella, Karthik, 2020. "Value of closed-cycle gas turbines with design assessment," Applied Energy, Elsevier, vol. 269(C).
  49. Astolfi, Marco & Alfani, Dario & Lasala, Silvia & Macchi, Ennio, 2018. "Comparison between ORC and CO2 power systems for the exploitation of low-medium temperature heat sources," Energy, Elsevier, vol. 161(C), pages 1250-1261.
  50. Crespi, Francesco & Gavagnin, Giacomo & Sánchez, David & Martínez, Gonzalo S., 2017. "Supercritical carbon dioxide cycles for power generation: A review," Applied Energy, Elsevier, vol. 195(C), pages 152-183.
  51. Liu, Zecheng & Zhong, Wenqi & Shao, Yingjuan & Liu, Xuejiao, 2022. "Conceptual design of a small-capacity supercritical CO2 coal-fired circulating fluidized bed boiler by an improved design calculation method," Energy, Elsevier, vol. 255(C).
  52. Xu, Jinliang & Sun, Enhui & Li, Mingjia & Liu, Huan & Zhu, Bingguo, 2018. "Key issues and solution strategies for supercritical carbon dioxide coal fired power plant," Energy, Elsevier, vol. 157(C), pages 227-246.
  53. Zhang, Yifan & Li, Hongzhi & Han, Wanlong & Bai, Wengang & Yang, Yu & Yao, Mingyu & Wang, Yueming, 2018. "Improved design of supercritical CO2 Brayton cycle for coal-fired power plant," Energy, Elsevier, vol. 155(C), pages 1-14.
  54. Penkuhn, Mathias & Tsatsaronis, George, 2020. "Systematic evaluation of efficiency improvement options for sCO2 Brayton cycles," Energy, Elsevier, vol. 210(C).
  55. Di Zhang & Yuqi Wang & Yonghui Xie, 2018. "Investigation into Off-Design Performance of a S-CO 2 Turbine Based on Concentrated Solar Power," Energies, MDPI, vol. 11(11), pages 1-13, November.
  56. Zhou, Jing & Zhu, Meng & Xu, Kai & Su, Sheng & Tang, Yifang & Hu, Song & Wang, Yi & Xu, Jun & He, Limo & Xiang, Jun, 2020. "Key issues and innovative double-tangential circular boiler configurations for the 1000 MW coal-fired supercritical carbon dioxide power plant," Energy, Elsevier, vol. 199(C).
  57. Sun, Lei & Liu, Tianyuan & Wang, Ding & Huang, Chengming & Xie, Yonghui, 2022. "Deep learning method based on graph neural network for performance prediction of supercritical CO2 power systems," Applied Energy, Elsevier, vol. 324(C).
  58. Xu, Zhen & Liu, Xinxin & Xie, Yingchun, 2023. "Off-design performances of a dry-cooled supercritical recompression Brayton cycle using CO2–H2S as working fluid," Energy, Elsevier, vol. 276(C).
  59. Gao, Lei & Cao, Tao & Hwang, Yunho & Radermacher, Reinhard, 2022. "Robustness analysis in supercritical CO2 power generation system configuration optimization," Energy, Elsevier, vol. 242(C).
  60. Liu, Chao & Xu, Jinliang & Li, Mingjia & Wang, Qingyang & Liu, Guanglin, 2022. "The comprehensive solution to decrease cooling wall temperatures of sCO2 boiler for coal fired power plant," Energy, Elsevier, vol. 252(C).
  61. Qi, Yinke & Huang, Diangui, 2022. "Energy and exergy analysis of supercritical/transcritical CO2 cycles for water injected hydrogen gas turbine," Energy, Elsevier, vol. 260(C).
  62. Gu, Mingyan & Wang, Mingming & Chen, Xue & Wang, Jimin & Lin, Yuyu & Chu, Huaqiang, 2019. "Numerical study on the effect of separated over-fire air ratio on combustion characteristics and NOx emission in a 1000 MW supercritical CO2 boiler," Energy, Elsevier, vol. 175(C), pages 593-603.
  63. Farajollahi, Hossein & Hossainpour, Siamak, 2023. "Techno-economic assessment of biomass and coal co-fueled chemical looping combustion unit integrated with supercritical CO2 cycle and Organic Rankine cycle," Energy, Elsevier, vol. 274(C).
  64. Mossi Idrissa, A.K. & Goni Boulama, K., 2019. "Advanced exergy analysis of a combined Brayton/Brayton power cycle," Energy, Elsevier, vol. 166(C), pages 724-737.
  65. Yang, D.L. & Tang, G.H. & Li, X.L. & Fan, Y.H., 2022. "Capacity-dependent configurations of S–CO2 coal-fired boiler by overall analysis with a unified model," Energy, Elsevier, vol. 245(C).
  66. Linares, José Ignacio & Cantizano, Alexis & Arenas, Eva & Moratilla, Beatriz Yolanda & Martín-Palacios, Víctor & Batet, Lluis, 2017. "Recuperated versus single-recuperator re-compressed supercritical CO2 Brayton power cycles for DEMO fusion reactor based on dual coolant lithium lead blanket," Energy, Elsevier, vol. 140(P1), pages 307-317.
  67. Zhou, Jing & Zhu, Meng & Su, Sheng & Chen, Lei & Xu, Jun & Hu, Song & Wang, Yi & Jiang, Long & Zhong, Wenqi & Xiang, Jun, 2020. "Numerical analysis and modified thermodynamic calculation methods for the furnace in the 1000 MW supercritical CO2 coal-fired boiler," Energy, Elsevier, vol. 212(C).
  68. Liu, Zecheng & Zhong, Wenqi & Shao, Yingjuan & Liu, Xuejiao, 2020. "Exergy analysis of supercritical CO2 coal-fired circulating fluidized bed boiler system based on the combustion process," Energy, Elsevier, vol. 208(C).
  69. Ma, Yuegeng & Liu, Ming & Yan, Junjie & Liu, Jiping, 2017. "Thermodynamic study of main compression intercooling effects on supercritical CO2 recompression Brayton cycle," Energy, Elsevier, vol. 140(P1), pages 746-756.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.