IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v199y2020ics0360544220305818.html
   My bibliography  Save this article

Key issues and innovative double-tangential circular boiler configurations for the 1000 MW coal-fired supercritical carbon dioxide power plant

Author

Listed:
  • Zhou, Jing
  • Zhu, Meng
  • Xu, Kai
  • Su, Sheng
  • Tang, Yifang
  • Hu, Song
  • Wang, Yi
  • Xu, Jun
  • He, Limo
  • Xiang, Jun

Abstract

When supercritical carbon dioxide (S–CO2) Brayton cycle is introduced into conventional coal-fired power plant, there exists the problems in S–CO2 boiler configurations due to the working medium physical properties’ change. This paper is taking a typical 1000 MW single reheat double-tangential circular boiler as example and investigations focus on the key issues of S–CO2 power plant with traditional boiler configuration from the thermodynamic system, combustion and heat transfer in the furnace, flow and heat transfer in tube. The results show that the studied traditional boiler configuration does not adapt for the 1000 MW S–CO2 coal-fired single reheat power plant for the mismatch heat duty. The effects of boiler size and flue gas recirculation ratio on the heat duty distribution and boiler performance are analyzed. Decreasing the boiler heat duty singly will have a negative impact on boiler performance. The newly developed “partial expansion at the upper zone + double furnace + symmetry flow mode” boiler configurations for the S–CO2 Brayton cycle are presented in order to coordinate the heat duty distribution and boiler performance. The overall net efficiency of the innovative 1000 MW single reheat S–CO2 power plant is up to 48.26%, higher ∼4% than the same-grade traditional steam power plant.

Suggested Citation

  • Zhou, Jing & Zhu, Meng & Xu, Kai & Su, Sheng & Tang, Yifang & Hu, Song & Wang, Yi & Xu, Jun & He, Limo & Xiang, Jun, 2020. "Key issues and innovative double-tangential circular boiler configurations for the 1000 MW coal-fired supercritical carbon dioxide power plant," Energy, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:energy:v:199:y:2020:i:c:s0360544220305818
    DOI: 10.1016/j.energy.2020.117474
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220305818
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117474?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Xiaofeng & Fan, Weidong & Liu, Yacheng & Bian, Bao, 2019. "Numerical simulation research on the unique thermal deviation in a 1000 MW tower type boiler," Energy, Elsevier, vol. 173(C), pages 1006-1020.
    2. Ma, Lun & Fang, Qingyan & Tan, Peng & Zhang, Cheng & Chen, Gang & Lv, Dangzhen & Duan, Xuenong & Chen, Yiping, 2016. "Effect of the separated overfire air location on the combustion optimization and NOx reduction of a 600MWe FW down-fired utility boiler with a novel combustion system," Applied Energy, Elsevier, vol. 180(C), pages 104-115.
    3. Zhou, Jing & Xiang, Jun & Su, Sheng & Hu, Song & Wang, Yi & Xu, Kai & Xu, Jun & He, Limo & Ling, Peng & Zhu, Meng, 2019. "Key issues and practical design for cooling wall of supercritical carbon dioxide coal-fired boiler," Energy, Elsevier, vol. 186(C).
    4. Gu, Mingyan & Wang, Mingming & Chen, Xue & Wang, Jimin & Lin, Yuyu & Chu, Huaqiang, 2019. "Numerical study on the effect of separated over-fire air ratio on combustion characteristics and NOx emission in a 1000 MW supercritical CO2 boiler," Energy, Elsevier, vol. 175(C), pages 593-603.
    5. Zima, Wiesław & Nowak-Ocłoń, Marzena & Ocłoń, Paweł, 2015. "Simulation of fluid heating in combustion chamber waterwalls of boilers for supercritical steam parameters," Energy, Elsevier, vol. 92(P1), pages 117-127.
    6. Ma, Lun & Fang, Qingyan & Yin, Chungen & Wang, Huajian & Zhang, Cheng & Chen, Gang, 2019. "A novel corner-fired boiler system of improved efficiency and coal flexibility and reduced NOx emissions," Applied Energy, Elsevier, vol. 238(C), pages 453-465.
    7. Fan, Y.H. & Tang, G.H. & Li, X.L. & Yang, D.L. & Wang, S.Q., 2019. "Correlation evaluation on circumferentially average heat transfer for supercritical carbon dioxide in non-uniform heating vertical tubes," Energy, Elsevier, vol. 170(C), pages 480-496.
    8. Liu, Xuejiao & Zhong, Wenqi & Li, Pingjiao & Xiang, Jun & Liu, Guoyao, 2019. "Design and performance analysis of coal-fired fluidized bed for supercritical CO2 power cycle," Energy, Elsevier, vol. 176(C), pages 468-478.
    9. Zhang, Yifan & Li, Hongzhi & Han, Wanlong & Bai, Wengang & Yang, Yu & Yao, Mingyu & Wang, Yueming, 2018. "Improved design of supercritical CO2 Brayton cycle for coal-fired power plant," Energy, Elsevier, vol. 155(C), pages 1-14.
    10. Hu, Yukun & Li, Hailong & Yan, Jinyue, 2014. "Numerical investigation of heat transfer characteristics in utility boilers of oxy-coal combustion," Applied Energy, Elsevier, vol. 130(C), pages 543-551.
    11. Le Moullec, Yann, 2013. "Conceptual study of a high efficiency coal-fired power plant with CO2 capture using a supercritical CO2 Brayton cycle," Energy, Elsevier, vol. 49(C), pages 32-46.
    12. Ligang Wang & Yongping Yang & Changqing Dong & Zhiping Yang & Gang Xu & Lingnan Wu, 2012. "Exergoeconomic Evaluation of a Modern Ultra-Supercritical Power Plant," Energies, MDPI, vol. 5(9), pages 1-17, September.
    13. Zhao, Zhigang & Su, Sheng & Si, Ningning & Hu, Song & Wang, Yi & Xu, Jun & Jiang, Long & Chen, Gang & Xiang, Jun, 2017. "Exergy analysis of the turbine system in a 1000 MW double reheat ultra-supercritical power plant," Energy, Elsevier, vol. 119(C), pages 540-548.
    14. Mecheri, Mounir & Le Moullec, Yann, 2016. "Supercritical CO2 Brayton cycles for coal-fired power plants," Energy, Elsevier, vol. 103(C), pages 758-771.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hou, Guolian & Xiong, Jian & Zhou, Guiping & Gong, Linjuan & Huang, Congzhi & Wang, Shunjiang, 2021. "Coordinated control system modeling of ultra-supercritical unit based on a new fuzzy neural network," Energy, Elsevier, vol. 234(C).
    2. Zhu, Meng & Chen, Lei & Zhou, Lingang & Jiang, Long & Su, Sheng & Hu, Song & Xu, Kai & Wang, Can & Li, Aishu & Qing, Haoran & Zhou, Jing & Wang, Yi & Li, Hanjian & Xiang, Jun, 2023. "Experimental test, numerical analysis and thermal calculation modeling of hundreds kWth-class supercritical CO2 fossil-fired boiler system," Energy, Elsevier, vol. 284(C).
    3. Zhou, Jing & Zhu, Meng & Chen, Lei & Ren, Qiangqiang & Su, Sheng & Hu, Song & Wang, Yi & Xiang, Jun, 2023. "Performance assessment and system optimization on supercritical CO2 double-path recompression coal-fired combined heat and power plants with MEA-based post-combustion CO2 capture," Energy, Elsevier, vol. 267(C).
    4. Zheng Kong & Jianquan Liu & Changxin Zhou, 2022. "Simulation Research on Thermal Deviation in 700 °C Ultra-Supercritical Boiler," Energies, MDPI, vol. 15(20), pages 1-16, October.
    5. Fan, Y.H. & Yang, D.L. & Tang, G.H. & Sheng, Q. & Li, X.L., 2022. "Design of S–CO2 coal-fired power system based on the multiscale analysis platform," Energy, Elsevier, vol. 240(C).
    6. Zhu, Meng & Zhou, Jing & Chen, Lei & Su, Sheng & Hu, Song & Qing, Haoran & Li, Aishu & Wang, Yi & Zhong, Wenqi & Xiang, Jun, 2022. "Economic analysis and cost modeling of supercritical CO2 coal-fired boiler based on global optimization," Energy, Elsevier, vol. 239(PD).
    7. Liu, Zecheng & Zhong, Wenqi & Shao, Yingjuan & Liu, Xuejiao, 2022. "Conceptual design of a small-capacity supercritical CO2 coal-fired circulating fluidized bed boiler by an improved design calculation method," Energy, Elsevier, vol. 255(C).
    8. Liu, Chao & Xu, Jinliang & Li, Mingjia & Wang, Qingyang & Liu, Guanglin, 2022. "The comprehensive solution to decrease cooling wall temperatures of sCO2 boiler for coal fired power plant," Energy, Elsevier, vol. 252(C).
    9. Zhou, Jing & Zhu, Meng & Su, Sheng & Chen, Lei & Xu, Jun & Hu, Song & Wang, Yi & Jiang, Long & Zhong, Wenqi & Xiang, Jun, 2020. "Numerical analysis and modified thermodynamic calculation methods for the furnace in the 1000 MW supercritical CO2 coal-fired boiler," Energy, Elsevier, vol. 212(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Jing & Zhu, Meng & Su, Sheng & Chen, Lei & Xu, Jun & Hu, Song & Wang, Yi & Jiang, Long & Zhong, Wenqi & Xiang, Jun, 2020. "Numerical analysis and modified thermodynamic calculation methods for the furnace in the 1000 MW supercritical CO2 coal-fired boiler," Energy, Elsevier, vol. 212(C).
    2. Zhou, Jing & Zhu, Meng & Chen, Lei & Ren, Qiangqiang & Su, Sheng & Hu, Song & Wang, Yi & Xiang, Jun, 2023. "Performance assessment and system optimization on supercritical CO2 double-path recompression coal-fired combined heat and power plants with MEA-based post-combustion CO2 capture," Energy, Elsevier, vol. 267(C).
    3. Fan, Y.H. & Yang, D.L. & Tang, G.H. & Sheng, Q. & Li, X.L., 2022. "Design of S–CO2 coal-fired power system based on the multiscale analysis platform," Energy, Elsevier, vol. 240(C).
    4. Wang, Shengpeng & Zhang, Yifan & Li, Hongzhi & Yao, Mingyu & Peng, Botao & Yan, Junjie, 2020. "Thermohydrodynamic analysis of the vertical gas wall and reheat gas wall in a 300 MW supercritical CO2 boiler," Energy, Elsevier, vol. 211(C).
    5. Yang, D.L. & Tang, G.H. & Fan, Y.H. & Li, X.L. & Wang, S.Q., 2020. "Arrangement and three-dimensional analysis of cooling wall in 1000 MW S–CO2 coal-fired boiler," Energy, Elsevier, vol. 197(C).
    6. Bai, Wengang & Li, Hongzhi & Zhang, Lei & Zhang, Yifan & Yang, Yu & Zhang, Chun & Yao, Mingyu, 2021. "Energy and exergy analyses of an improved recompression supercritical CO2 cycle for coal-fired power plant," Energy, Elsevier, vol. 222(C).
    7. Li, Zhaozhi & Shao, Yingjuan & Zhong, Wenqi & Liu, Hao, 2023. "Optimal design and thermodynamic evaluation of supercritical CO2 oxy-coal circulating fluidized bed power generation systems," Energy, Elsevier, vol. 277(C).
    8. Zhu, Meng & Zhou, Jing & Chen, Lei & Su, Sheng & Hu, Song & Qing, Haoran & Li, Aishu & Wang, Yi & Zhong, Wenqi & Xiang, Jun, 2022. "Economic analysis and cost modeling of supercritical CO2 coal-fired boiler based on global optimization," Energy, Elsevier, vol. 239(PD).
    9. Xu, Cheng & Zhang, Qiang & Yang, Zhiping & Li, Xiaosa & Xu, Gang & Yang, Yongping, 2018. "An improved supercritical coal-fired power generation system incorporating a supplementary supercritical CO2 cycle," Applied Energy, Elsevier, vol. 231(C), pages 1319-1329.
    10. Liu, Zecheng & Zhong, Wenqi & Shao, Yingjuan & Liu, Xuejiao, 2020. "Exergy analysis of supercritical CO2 coal-fired circulating fluidized bed boiler system based on the combustion process," Energy, Elsevier, vol. 208(C).
    11. Li, Hongzhi & Zhang, Yifan & Yao, Mingyu & Yang, Yu & Han, Wanlong & Bai, Wengang, 2019. "Design assessment of a 5 MW fossil-fired supercritical CO2 power cycle pilot loop," Energy, Elsevier, vol. 174(C), pages 792-804.
    12. Tong, Yongjing & Duan, Liqiang & Yang, Ming & Pang, Liping, 2022. "Design optimization of a new supercritical CO2 single reheat coal-fired power generation system," Energy, Elsevier, vol. 239(PB).
    13. Chen, Zhewen & Wang, Yanjuan & Zhang, Xiaosong & Xu, Jinliang, 2020. "The energy-saving mechanism of coal-fired power plant with S–CO2 cycle compared to steam-Rankine cycle," Energy, Elsevier, vol. 195(C).
    14. Yang, D.L. & Tang, G.H. & Li, X.L. & Fan, Y.H., 2022. "Capacity-dependent configurations of S–CO2 coal-fired boiler by overall analysis with a unified model," Energy, Elsevier, vol. 245(C).
    15. Yuan, Zhenhua & Chen, Zhichao & Zhang, Bo & Gao, Xuelin & Li, Jiawei & Qiao, Yanyu & Li, Zhengqi, 2023. "Study on the slagging trends of the pre-combustion chamber in industrial pulverized coal boiler under different excess air coefficients by CFD numerical simulation," Energy, Elsevier, vol. 264(C).
    16. Liu, Xuejiao & Zhong, Wenqi & Li, Pingjiao & Xiang, Jun & Liu, Guoyao, 2019. "Design and performance analysis of coal-fired fluidized bed for supercritical CO2 power cycle," Energy, Elsevier, vol. 176(C), pages 468-478.
    17. Choi, Minsung & Park, Yeseul & Li, Xinzhuo & Kim, Kibeom & Sung, Yonmo & Hwang, Taegam & Choi, Gyungmin, 2021. "Numerical evaluation of pulverized coal swirling flames and NOx emissions in a coal-fired boiler: Effects of co- and counter-swirling flames and coal injection modes," Energy, Elsevier, vol. 217(C).
    18. Liu, Zecheng & Zhong, Wenqi & Shao, Yingjuan & Liu, Xuejiao, 2022. "Conceptual design of a small-capacity supercritical CO2 coal-fired circulating fluidized bed boiler by an improved design calculation method," Energy, Elsevier, vol. 255(C).
    19. Gu, Mingyan & Wang, Mingming & Chen, Xue & Wang, Jimin & Lin, Yuyu & Chu, Huaqiang, 2019. "Numerical study on the effect of separated over-fire air ratio on combustion characteristics and NOx emission in a 1000 MW supercritical CO2 boiler," Energy, Elsevier, vol. 175(C), pages 593-603.
    20. Luo, Kun & Zhao, Chunguang & Wen, Xu & Gao, Zhengwei & Bai, Yun & Xing, Jiangkuan & Fan, Jianren, 2019. "A priori study of an extended flamelet/progress variable model for NO prediction in pulverized coal flames," Energy, Elsevier, vol. 175(C), pages 768-780.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:199:y:2020:i:c:s0360544220305818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.