IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v103y2016icp758-771.html
   My bibliography  Save this article

Supercritical CO2 Brayton cycles for coal-fired power plants

Author

Listed:
  • Mecheri, Mounir
  • Le Moullec, Yann

Abstract

This paper investigates the supercritical CO2 cycles performance, from thermodynamic consideration and within realistic industrial modeling hypotheses, for coal power plant application. It proposes a design of such a power cycle for a first step implementation of the technology. Main findings are the following: even with the low temperature heat available in the coal combustion flue gas, a recompression cycle is mandatory for this application: the difference between this option and a standard Brayton cycle is more than 4.5%pt efficiency. Compared to no-reheated cycle, single reheat is an effective configuration with 1.5%pt efficiency increases. Another process improvement such as double reheat cycle, double recompression cycle and an advanced flue gas economizer configuration induce efficiency gain between 0.3 and 0.5%pt. Influence of the heat sink temperature stability has been quantified: 1.5%pt reduction for 5 °C increase with a minimal cycle pressure of 7 MPa; however, performance stability could be improved by adapting the main compressor inlet pressure. As a conclusion, CO2 supercritical coal-fired power plant theoretically offers interesting performances, of 47.8%-LHV efficiency, with existing materials at current operating conditions in a relatively near timeframe.

Suggested Citation

  • Mecheri, Mounir & Le Moullec, Yann, 2016. "Supercritical CO2 Brayton cycles for coal-fired power plants," Energy, Elsevier, vol. 103(C), pages 758-771.
  • Handle: RePEc:eee:energy:v:103:y:2016:i:c:p:758-771
    DOI: 10.1016/j.energy.2016.02.111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216301736
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.02.111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:103:y:2016:i:c:p:758-771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.