IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v276y2020ics0306261920308667.html
   My bibliography  Save this article

A one-dimensional design methodology for supercritical carbon dioxide Brayton cycles: Integration of cycle conceptual design and components preliminary design

Author

Listed:
  • Yao, Lichao
  • Zou, Zhengping

Abstract

The state-of-the-art supercritical carbon dioxide Brayton cycles are complex integrated systems featured with strong coupling effects between the cycle and components. To reveal cycle characteristics precisely and conduct cycle design efficiently, integration of the cycle design and components design are required at the very beginning. In this paper, a one-dimensional design methodology for supercritical carbon dioxide Brayton cycles was proposed, based on the integration between cycle conceptual design and components preliminary design. Details of the preliminary design methodology for turbomachinery and heat exchangers were presented. A 500kWe and 5MWe recompression cycle were designed as demonstration examples, and comparative analysis of cycle performance and components performances were performed. Meanwhile, parametric analysis of some crucial parameters was carried out and some design considerations for recompression cycle were presented. Design results suggest that the 5MWe cycle could reach a higher thermal efficiency of 38.0% compared with 37.0% for the 500kWe cycle, which fundamentally results from the larger mass flow rate. The enhanced mass flow rate would lead to higher turbomachinery efficiency in the 5MWe cycle, and the stator loss reductions contribute to the turbomachinery efficiency improvements. As for the design of recompression cycle, selecting a flow split ratio smaller than its optimum value and a reasonably high effectiveness for each recuperator is recommended. Keeping the rotation speed of the re-compressor within its optimum region is also suggested, especially for low-power cycles. Besides, the main-compressor inlet temperature is a crucial parameter, and a compromise between cycle efficiency and system maintenance should be made.

Suggested Citation

  • Yao, Lichao & Zou, Zhengping, 2020. "A one-dimensional design methodology for supercritical carbon dioxide Brayton cycles: Integration of cycle conceptual design and components preliminary design," Applied Energy, Elsevier, vol. 276(C).
  • Handle: RePEc:eee:appene:v:276:y:2020:i:c:s0306261920308667
    DOI: 10.1016/j.apenergy.2020.115354
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920308667
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115354?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Guangdai & Shu, Gequn & Tian, Hua & Shi, Lingfeng & Zhuge, Weilin & Zhang, Jing & Atik, Mohammad Atikur Rahman, 2020. "Development and experimental study of a supercritical CO2 axial turbine applied for engine waste heat recovery," Applied Energy, Elsevier, vol. 257(C).
    2. Linares, José I. & Montes, María J. & Cantizano, Alexis & Sánchez, Consuelo, 2020. "A novel supercritical CO2 recompression Brayton power cycle for power tower concentrating solar plants," Applied Energy, Elsevier, vol. 263(C).
    3. Cheng, Kunlin & Qin, Jiang & Sun, Hongchuang & Li, Heng & He, Shuai & Zhang, Silong & Bao, Wen, 2019. "Power optimization and comparison between simple recuperated and recompressing supercritical carbon dioxide Closed-Brayton-Cycle with finite cold source on hypersonic vehicles," Energy, Elsevier, vol. 181(C), pages 1189-1201.
    4. Cayer, Emmanuel & Galanis, Nicolas & Desilets, Martin & Nesreddine, Hakim & Roy, Philippe, 2009. "Analysis of a carbon dioxide transcritical power cycle using a low temperature source," Applied Energy, Elsevier, vol. 86(7-8), pages 1055-1063, July.
    5. Meroni, Andrea & Zühlsdorf, Benjamin & Elmegaard, Brian & Haglind, Fredrik, 2018. "Design of centrifugal compressors for heat pump systems," Applied Energy, Elsevier, vol. 232(C), pages 139-156.
    6. Wang, Kun & He, Ya-Ling & Zhu, Han-Hui, 2017. "Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts," Applied Energy, Elsevier, vol. 195(C), pages 819-836.
    7. Jiang, Yuan & Liese, Eric & Zitney, Stephen E. & Bhattacharyya, Debangsu, 2018. "Optimal design of microtube recuperators for an indirect supercritical carbon dioxide recompression closed Brayton cycle," Applied Energy, Elsevier, vol. 216(C), pages 634-648.
    8. Guo, Jiangfeng, 2016. "Design analysis of supercritical carbon dioxide recuperator," Applied Energy, Elsevier, vol. 164(C), pages 21-27.
    9. Rahbar, Kiyarash & Mahmoud, Saad & Al-Dadah, Raya K. & Moazami, Nima, 2015. "Parametric analysis and optimization of a small-scale radial turbine for Organic Rankine Cycle," Energy, Elsevier, vol. 83(C), pages 696-711.
    10. Santini, Lorenzo & Accornero, Carlo & Cioncolini, Andrea, 2016. "On the adoption of carbon dioxide thermodynamic cycles for nuclear power conversion: A case study applied to Mochovce 3 Nuclear Power Plant," Applied Energy, Elsevier, vol. 181(C), pages 446-463.
    11. Mecheri, Mounir & Le Moullec, Yann, 2016. "Supercritical CO2 Brayton cycles for coal-fired power plants," Energy, Elsevier, vol. 103(C), pages 758-771.
    12. Jiang, Yuan & Liese, Eric & Zitney, Stephen E. & Bhattacharyya, Debangsu, 2018. "Design and dynamic modeling of printed circuit heat exchangers for supercritical carbon dioxide Brayton power cycles," Applied Energy, Elsevier, vol. 231(C), pages 1019-1032.
    13. Meroni, Andrea & Robertson, Miles & Martinez-Botas, Ricardo & Haglind, Fredrik, 2018. "A methodology for the preliminary design and performance prediction of high-pressure ratio radial-inflow turbines," Energy, Elsevier, vol. 164(C), pages 1062-1078.
    14. Iverson, Brian D. & Conboy, Thomas M. & Pasch, James J. & Kruizenga, Alan M., 2013. "Supercritical CO2 Brayton cycles for solar-thermal energy," Applied Energy, Elsevier, vol. 111(C), pages 957-970.
    15. Padilla, Ricardo Vasquez & Soo Too, Yen Chean & Benito, Regano & Stein, Wes, 2015. "Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers," Applied Energy, Elsevier, vol. 148(C), pages 348-365.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yuqi & Liu, Tianyuan & Meng, Yue & Zhang, Di & Xie, Yonghui, 2022. "Integrated optimization for design and operation of turbomachinery in a solar-based Brayton cycle based on deep learning techniques," Energy, Elsevier, vol. 252(C).
    2. Zhang, Enbo & Watanabe, Toshinori & Lai, Zitian & Bai, Bofeng, 2024. "A compressible flow solver for turbomachinery of the real gases with strongly variable properties," Energy, Elsevier, vol. 290(C).
    3. Fernández-Torrijos, M. & González-Gómez, P.A. & Sobrino, C. & Santana, D., 2021. "Economic and thermo-mechanical design of tubular sCO2 central-receivers," Renewable Energy, Elsevier, vol. 177(C), pages 1087-1101.
    4. Hagen, Brede A.L. & Andresen, Trond & Nekså, Petter, 2022. "Equation-oriented methods for optimizing Rankine cycles using radial inflow turbine," Energy, Elsevier, vol. 252(C).
    5. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    6. Du, Yadong & Yang, Ce & Zhao, Ben & Hu, Chenxing & Zhang, Hanzhi & Yu, Zhiyi & Gao, Jianbing & Zhao, Wei & Wang, Haimei, 2023. "Optimal design of a supercritical carbon dioxide recompression cycle using deep neural network and data mining techniques," Energy, Elsevier, vol. 271(C).
    7. Chen, Weixiong & Qian, Yiran & Tang, Xin & Fang, Huawei & Yi, Jingwei & Liang, Tiebo & Zhao, Quanbin & Yan, Junjie, 2023. "System-component combined design and comprehensive evaluation of closed-air Brayton cycle," Energy, Elsevier, vol. 278(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Jinliang & Sun, Enhui & Li, Mingjia & Liu, Huan & Zhu, Bingguo, 2018. "Key issues and solution strategies for supercritical carbon dioxide coal fired power plant," Energy, Elsevier, vol. 157(C), pages 227-246.
    2. Crespi, Francesco & Gavagnin, Giacomo & Sánchez, David & Martínez, Gonzalo S., 2017. "Supercritical carbon dioxide cycles for power generation: A review," Applied Energy, Elsevier, vol. 195(C), pages 152-183.
    3. Ma, Teng & Li, Ming-Jia & Xu, Jin-Liang & Cao, Feng, 2019. "Thermodynamic analysis and performance prediction on dynamic response characteristic of PCHE in 1000 MW S-CO2 coal fired power plant," Energy, Elsevier, vol. 175(C), pages 123-138.
    4. Olumayegun, Olumide & Wang, Meihong & Kelsall, Greg, 2017. "Thermodynamic analysis and preliminary design of closed Brayton cycle using nitrogen as working fluid and coupled to small modular Sodium-cooled fast reactor (SM-SFR)," Applied Energy, Elsevier, vol. 191(C), pages 436-453.
    5. Saeed, Muhammad & Kim, Man-Hoe, 2022. "A newly proposed supercritical carbon dioxide Brayton cycle configuration to enhance energy sources integration capability," Energy, Elsevier, vol. 239(PA).
    6. Guo, Jiangfeng, 2016. "Design analysis of supercritical carbon dioxide recuperator," Applied Energy, Elsevier, vol. 164(C), pages 21-27.
    7. Olumayegun, Olumide & Wang, Meihong & Oko, Eni, 2019. "Thermodynamic performance evaluation of supercritical CO2 closed Brayton cycles for coal-fired power generation with solvent-based CO2 capture," Energy, Elsevier, vol. 166(C), pages 1074-1088.
    8. Wang, Kun & He, Ya-Ling & Zhu, Han-Hui, 2017. "Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts," Applied Energy, Elsevier, vol. 195(C), pages 819-836.
    9. Santini, Lorenzo & Accornero, Carlo & Cioncolini, Andrea, 2016. "On the adoption of carbon dioxide thermodynamic cycles for nuclear power conversion: A case study applied to Mochovce 3 Nuclear Power Plant," Applied Energy, Elsevier, vol. 181(C), pages 446-463.
    10. Xu, Zhen & Liu, Xinxin & Xie, Yingchun, 2023. "Off-design performances of a dry-cooled supercritical recompression Brayton cycle using CO2–H2S as working fluid," Energy, Elsevier, vol. 276(C).
    11. Fallah, M. & Mohammadi, Z. & Mahmoudi, S.M. Seyed, 2022. "Advanced exergy analysis of the combined S–CO2/ORC system," Energy, Elsevier, vol. 241(C).
    12. Wang, Xurong & Dai, Yiping, 2016. "Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2 cycle waste heat recovery: A comparative study," Applied Energy, Elsevier, vol. 170(C), pages 193-207.
    13. Zhao, Yu & Chang, Zhiyuan & Zhao, Yuanyang & Yang, Qichao & Liu, Guangbin & Li, Liansheng, 2023. "Performance comparison of three supercritical CO2 solar thermal power systems with compressed fluid and molten salt energy storage," Energy, Elsevier, vol. 282(C).
    14. Wang, Di & Han, Xinrui & Li, Haoyu & Li, Xiaoli, 2023. "Dynamic simulation and parameter analysis of solar-coal hybrid power plant based on the supercritical CO2 Brayton cycle," Energy, Elsevier, vol. 272(C).
    15. Paul Tafur-Escanta & Robert Valencia-Chapi & Ignacio López-Paniagua & Luis Coco-Enríquez & Javier Muñoz-Antón, 2021. "Supercritical CO 2 Binary Mixtures for Recompression Brayton s-CO 2 Power Cycles Coupled to Solar Thermal Energy Plants," Energies, MDPI, vol. 14(13), pages 1-27, July.
    16. Rujun Zhang & Xiaohe Wang & Shuang Yang & Xin Shen, 2024. "Thermodynamic Analysis of a Cogeneration System Combined with Heat, Cold, and Electricity Based on the Supercritical CO 2 Power Cycle," Energies, MDPI, vol. 17(7), pages 1-20, April.
    17. Binotti, Marco & Astolfi, Marco & Campanari, Stefano & Manzolini, Giampaolo & Silva, Paolo, 2017. "Preliminary assessment of sCO2 cycles for power generation in CSP solar tower plants," Applied Energy, Elsevier, vol. 204(C), pages 1007-1017.
    18. Reyes-Belmonte, M.A. & Sebastián, A. & Romero, M. & González-Aguilar, J., 2016. "Optimization of a recompression supercritical carbon dioxide cycle for an innovative central receiver solar power plant," Energy, Elsevier, vol. 112(C), pages 17-27.
    19. Zhu, Han-Hui & Wang, Kun & He, Ya-Ling, 2017. "Thermodynamic analysis and comparison for different direct-heated supercritical CO2 Brayton cycles integrated into a solar thermal power tower system," Energy, Elsevier, vol. 140(P1), pages 144-157.
    20. Bai, Ziwei & Zhang, Guoqiang & Li, Yongyi & Xu, Gang & Yang, Yongping, 2018. "A supercritical CO2 Brayton cycle with a bleeding anabranch used in coal-fired power plants," Energy, Elsevier, vol. 142(C), pages 731-738.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:276:y:2020:i:c:s0306261920308667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.