My bibliography
Save this item
Forecasting crude oil price volatility and value-at-risk: Evidence from historical and recent data
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gong, Xu & Lin, Boqiang, 2018. "The incremental information content of investor fear gauge for volatility forecasting in the crude oil futures market," Energy Economics, Elsevier, vol. 74(C), pages 370-386.
- Matteo Bonato & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2020.
"Investor Happiness and Predictability of the Realized Volatility of Oil Price,"
Sustainability, MDPI, vol. 12(10), pages 1-11, May.
- Matteo Bonato & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2020. "Investor Happiness and Predictability of the Realized Volatility of Oil Price," Working Papers 202009, University of Pretoria, Department of Economics.
- Lyu, Yongjian & Wang, Peng & Wei, Yu & Ke, Rui, 2017. "Forecasting the VaR of crude oil market: Do alternative distributions help?," Energy Economics, Elsevier, vol. 66(C), pages 523-534.
- Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020.
"Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss,"
Journal of International Money and Finance, Elsevier, vol. 104(C).
- Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2019. "Forecasting Realized Oil-Price Volatility: The Role of Financial Stress and Asymmetric Loss," Working Papers 201903, University of Pretoria, Department of Economics.
- Sun, Jie & Zhao, Xiaojun & Xu, Chao, 2021. "Crude oil market autocorrelation: Evidence from multiscale quantile regression analysis," Energy Economics, Elsevier, vol. 98(C).
- Liu, Bing-Yue & Ji, Qiang & Fan, Ying, 2017. "Dynamic return-volatility dependence and risk measure of CoVaR in the oil market: A time-varying mixed copula model," Energy Economics, Elsevier, vol. 68(C), pages 53-65.
- Mehmet Balcilar & Stelios Bekiros & Rangan Gupta, 2017.
"The role of news-based uncertainty indices in predicting oil markets: a hybrid nonparametric quantile causality method,"
Empirical Economics, Springer, vol. 53(3), pages 879-889, November.
- Mehmet Balcilar & Rangan Gupta & STELIOS BEKIROS, 2015. "The Role Of News-Based Uncertainty Indices In Predicting Oil Markets: A Hybrid Nonparametric Quantile Causality Method," Working Papers 15-02, Eastern Mediterranean University, Department of Economics.
- Mehmet Balcilar & Stelios Bekiros & Rangan Gupta, 2015. "The Role of News-Based Uncertainty Indices in Predicting Oil Markets: A Hybrid Nonparametric Quantile Causality Method," Working Papers 201522, University of Pretoria, Department of Economics.
- Ruipeng Liu & Riza Demirer & Rangan Gupta & Mark E. Wohar, 2017. "Do Bivariate Multifractal Models Improve Volatility Forecasting in Financial Time Series? An Application to Foreign Exchange and Stock Markets," Working Papers 201728, University of Pretoria, Department of Economics.
- Alizadeh, Amir H. & Huang, Chih-Yueh & Marsh, Ian W., 2021. "Modelling the volatility of TOCOM energy futures: A regime switching realised volatility approach," Energy Economics, Elsevier, vol. 93(C).
- Gupta, Rangan & Nielsen, Joshua & Pierdzioch, Christian, 2024.
"Stock market bubbles and the realized volatility of oil price returns,"
Energy Economics, Elsevier, vol. 132(C).
- Rangan Gupta & Joshua Nielsen & Christian Pierdzioch, 2023. "Stock Market Bubbles and the Realized Volatility of Oil Price Returns," Working Papers 202325, University of Pretoria, Department of Economics.
- Riza Demirer & Rangan Gupta & Qiang Ji & Aviral Kumar Tiwari, 2018. "Geopolitical Risks and the Predictability of Regional Oil Returns and Volatility," Working Papers 201860, University of Pretoria, Department of Economics.
- Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian & Yoon, Seong-Min, 2021.
"OPEC news and jumps in the oil market,"
Energy Economics, Elsevier, vol. 96(C).
- Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch & Seong-Min Yoon, 2020. "OPEC News and Jumps in the Oil Market," Working Papers 202053, University of Pretoria, Department of Economics.
- Xu Gong & Boqiang Lin, 2021. "Effects of structural changes on the prediction of downside volatility in futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(7), pages 1124-1153, July.
- Segnon Mawuli & Lau Chi Keung & Wilfling Bernd & Gupta Rangan, 2022.
"Are multifractal processes suited to forecasting electricity price volatility? Evidence from Australian intraday data,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 26(1), pages 73-98, February.
- Mawuli Segnon & Chi Keung Lau & Bernd Wilfling & Rangan Gupta, 2017. "Are Multifractal Processes Suited to Forecasting Electricity Price Volatility? Evidence from Australian Intraday Data," Working Papers 201739, University of Pretoria, Department of Economics.
- Mawuli Segnon & Chi Keung Lau & Bernd Wilfling & Rangan Gupta, 2017. "Are multifractal processes suited to forecasting electricity price volatility? Evidence from Australian intraday data," CQE Working Papers 6117, Center for Quantitative Economics (CQE), University of Muenster.
- Anjum, Hassan & Malik, Farooq, 2020. "Forecasting risk in the US Dollar exchange rate under volatility shifts," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
- Afees A. Salisu & Rangan Gupta & Elie Bouri & Qiang Ji, 2022. "Mixed‐frequency forecasting of crude oil volatility based on the information content of global economic conditions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 134-157, January.
- Zhang, Yue-Jun & Yao, Ting & He, Ling-Yun & Ripple, Ronald, 2019. "Volatility forecasting of crude oil market: Can the regime switching GARCH model beat the single-regime GARCH models?," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 302-317.
- Gupta, Rangan & Kanda, Patrick & Tiwari, Aviral Kumar & Wohar, Mark E., 2019.
"Time-varying predictability of oil market movements over a century of data: The role of US financial stress,"
The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
- Rangan Gupta & Patrick Kanda & Aviral Kumar Tiwari & Mark E. Wohar, 2018. "Time-Varying Predictability of Oil Market Movements Over a Century of Data: The Role of US Financial Stress," Working Papers 201848, University of Pretoria, Department of Economics.
- Cristina Sattarhoff & Marc Gronwald, 2018. "How to Measure Financial Market Efficiency? A Multifractality-Based Quantitative Approach with an Application to the European Carbon Market," CESifo Working Paper Series 7102, CESifo.
- Segnon, Mawuli & Lux, Thomas & Gupta, Rangan, 2017. "Modeling and forecasting the volatility of carbon dioxide emission allowance prices: A review and comparison of modern volatility models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 692-704.
- Catalin Popescu & Sorin Alexandru Gheorghiu, 2021. "Economic Analysis and Generic Algorithm for Optimizing the Investments Decision-Making Process in Oil Field Development," Energies, MDPI, vol. 14(19), pages 1-24, September.
- Rangan Gupta & Christian Pierdzioch, 2021.
"Climate Risks and the Realized Volatility Oil and Gas Prices: Results of an Out-of-Sample Forecasting Experiment,"
Energies, MDPI, vol. 14(23), pages 1-18, December.
- Rangan Gupta & Christian Pierdzioch, 2021. "Climate Risks and the Realized Volatility Oil and Gas Prices: Results of an Out-of-Sample Forecasting Experiment," Working Papers 202175, University of Pretoria, Department of Economics.
- Patra, Saswat, 2021. "Revisiting value-at-risk and expected shortfall in oil markets under structural breaks: The role of fat-tailed distributions," Energy Economics, Elsevier, vol. 101(C).
- Charles, Amélie & Darné, Olivier, 2017.
"Forecasting crude-oil market volatility: Further evidence with jumps,"
Energy Economics, Elsevier, vol. 67(C), pages 508-519.
- Amélie Charles & Olivier Darné, 2017. "Forecasting crude-oil market volatility: Further evidence with jumps," Post-Print hal-01598141, HAL.
- Nima Nonejad, 2019. "Modeling Persistence and Parameter Instability in Historical Crude Oil Price Data Using a Gibbs Sampling Approach," Computational Economics, Springer;Society for Computational Economics, vol. 53(4), pages 1687-1710, April.
- Halkos, George & Tsirivis, Apostolos, 2019. "Using Value-at-Risk for effective energy portfolio risk management," MPRA Paper 91674, University Library of Munich, Germany.
- Rangan Gupta & Christian Pierdzioch, 2021.
"Forecasting the Volatility of Crude Oil: The Role of Uncertainty and Spillovers,"
Energies, MDPI, vol. 14(14), pages 1-15, July.
- Rangan Gupta & Christian Pierdzioch, 2021. "Forecasting the Volatility of Crude Oil: The Role of Uncertainty and Spillovers," Working Papers 202135, University of Pretoria, Department of Economics.
- Oscar V. De la Torre-Torres & Evaristo Galeana-Figueroa & María de la Cruz Del Río-Rama & José Álvarez-García, 2022. "Using Markov-Switching Models in US Stocks Optimal Portfolio Selection in a Black–Litterman Context (Part 1)," Mathematics, MDPI, vol. 10(8), pages 1-28, April.
- Meng, Fanyi & Liu, Li, 2019. "Analyzing the economic sources of oil price volatility: An out-of-sample perspective," Energy, Elsevier, vol. 177(C), pages 476-486.
- Gong, Xu & Lin, Boqiang, 2017. "Forecasting the good and bad uncertainties of crude oil prices using a HAR framework," Energy Economics, Elsevier, vol. 67(C), pages 315-327.
- Chai, Shanglei & Yang, Xiaoli & Zhang, Zhen & Abedin, Mohammad Zoynul & Lucey, Brian, 2022. "Regional imbalances of market efficiency in China’s pilot emission trading schemes (ETS): A multifractal perspective," Research in International Business and Finance, Elsevier, vol. 63(C).
- Riza Demirer & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2022.
"Risk aversion and the predictability of crude oil market volatility: A forecasting experiment with random forests,"
Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(8), pages 1755-1767, August.
- Riza Demirer & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2019. "Risk Aversion and the Predictability of Crude Oil Market Volatility: A Forecasting Experiment with Random Forests," Working Papers 201972, University of Pretoria, Department of Economics.
- Kakade, Kshitij & Jain, Ishan & Mishra, Aswini Kumar, 2022. "Value-at-Risk forecasting: A hybrid ensemble learning GARCH-LSTM based approach," Resources Policy, Elsevier, vol. 78(C).
- Naeem, Muhammad & Tiwari, Aviral Kumar & Mubashra, Sana & Shahbaz, Muhammad, 2019. "Modeling volatility of precious metals markets by using regime-switching GARCH models," Resources Policy, Elsevier, vol. 64(C).
- Xin-Lan Fu & Xing-Lu Gao & Zheng Shan & Zhi-Qiang Jiang & Wei-Xing Zhou, 2018. "Multifractal characteristics and return predictability in the Chinese stock markets," Papers 1806.07604, arXiv.org.
- Mawuli Segnon & Stelios Bekiros & Bernd Wilfling, 2018.
"Forecasting Inflation Uncertainty in the G7 Countries,"
Econometrics, MDPI, vol. 6(2), pages 1-25, April.
- Mawuli Segnon & Stelios Bekiros & Bernd Wilfling, 2018. "Forecasting Inflation Uncertainty in the G7 Countries," CQE Working Papers 7118, Center for Quantitative Economics (CQE), University of Muenster.
- Nonejad, Nima, 2018. "Déjà vol oil? Predicting S&P 500 equity premium using crude oil price volatility: Evidence from old and recent time-series data," International Review of Financial Analysis, Elsevier, vol. 58(C), pages 260-270.
- Ruipeng Liu & Riza Demirer & Rangan Gupta & Mark Wohar, 2020. "Volatility forecasting with bivariate multifractal models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 155-167, March.
- Wei Kuang, 2022. "Oil tail-risk forecasts: from financial crisis to COVID-19," Risk Management, Palgrave Macmillan, vol. 24(4), pages 420-460, December.
- Luo, Jiawen & Ji, Qiang & Klein, Tony & Todorova, Neda & Zhang, Dayong, 2020. "On realized volatility of crude oil futures markets: Forecasting with exogenous predictors under structural breaks," Energy Economics, Elsevier, vol. 89(C).
- Afees A. Salisu & Rangan Gupta & Elie Bouri & Qiang Ji, 2020. "Forecasting Oil Volatility Using a GARCH-MIDAS Approach: The Role of Global Economic Conditions," Working Papers 202051, University of Pretoria, Department of Economics.
- František Čech & Jozef Baruník, 2019.
"Panel quantile regressions for estimating and predicting the value‐at‐risk of commodities,"
Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(9), pages 1167-1189, September.
- Frantiv{s}ek v{C}ech & Jozef Barun'ik, 2018. "Panel quantile regressions for estimating and predicting the Value--at--Risk of commodities," Papers 1807.11823, arXiv.org.
- Raggad, Bechir, 2023. "Can implied volatility predict returns on oil market? Evidence from Cross-Quantilogram Approach," Resources Policy, Elsevier, vol. 80(C).
- Chen, Hongtao & Liu, Li & Li, Xiaolei, 2018. "The predictive content of CBOE crude oil volatility index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 837-850.
- Salisu, Afees A. & Gupta, Rangan & Demirer, Riza, 2022.
"Global financial cycle and the predictability of oil market volatility: Evidence from a GARCH-MIDAS model,"
Energy Economics, Elsevier, vol. 108(C).
- Afees A. Salisu & Rangan Gupta & Riza Demirer, 2021. "Global Financial Cycle and the Predictability of Oil Market Volatility: Evidence from a GARCH-MIDAS Model," Working Papers 202121, University of Pretoria, Department of Economics.
- Mawuli Segnon & Stelios Bekiros, 2020. "Forecasting volatility in bitcoin market," Annals of Finance, Springer, vol. 16(3), pages 435-462, September.
- Nima Nonejad, 2020. "Does the price of crude oil help predict the conditional distribution of aggregate equity return?," Empirical Economics, Springer, vol. 58(1), pages 313-349, January.
- Bechir Raggad & Elie Bouri, 2023. "Quantile Dependence between Crude Oil Returns and Implied Volatility: Evidence from Parametric and Nonparametric Tests," Mathematics, MDPI, vol. 11(3), pages 1-23, January.
- Hasanov, Akram Shavkatovich & Shaiban, Mohammed Sharaf & Al-Freedi, Ajab, 2020. "Forecasting volatility in the petroleum futures markets: A re-examination and extension," Energy Economics, Elsevier, vol. 86(C).
- Demirer, Riza & Gupta, Rangan & Pierdzioch, Christian & Shahzad, Syed Jawad Hussain, 2020.
"The predictive power of oil price shocks on realized volatility of oil: A note,"
Resources Policy, Elsevier, vol. 69(C).
- Riza Demirer & Rangan Gupta & Christian Pierdzioch & Syed Jawad Hussain Shahzad, 2020. "The Predictive Power of Oil Price Shocks on Realized Volatility of Oil: A Note," Working Papers 202044, University of Pretoria, Department of Economics.
- González-Pla, Francisco & Lovreta, Lidija, 2022. "Modeling and forecasting firm-specific volatility: The role of asymmetry and long-memory," Finance Research Letters, Elsevier, vol. 48(C).
- Luo, Jiawen & Demirer, Riza & Gupta, Rangan & Ji, Qiang, 2022.
"Forecasting oil and gold volatilities with sentiment indicators under structural breaks,"
Energy Economics, Elsevier, vol. 105(C).
- Jiawen Luo & Riza Demirer & Rangan Gupta & Qiang Ji, 2021. "Forecasting Oil and Gold Volatilities with Sentiment Indicators Under Structural Breaks," Working Papers 202130, University of Pretoria, Department of Economics.
- Wang, Qiang & Li, Shuyu & Li, Rongrong, 2018. "China's dependency on foreign oil will exceed 80% by 2030: Developing a novel NMGM-ARIMA to forecast China's foreign oil dependence from two dimensions," Energy, Elsevier, vol. 163(C), pages 151-167.
- Yushu Li & Hyunjoo Kim Karlsson, 2023. "Investigating the Asymmetric Behavior of Oil Price Volatility Using Support Vector Regression," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1765-1790, April.
- Çepni, Oğuzhan & Gupta, Rangan & Pienaar, Daniel & Pierdzioch, Christian, 2022.
"Forecasting the realized variance of oil-price returns using machine learning: Is there a role for U.S. state-level uncertainty?,"
Energy Economics, Elsevier, vol. 114(C).
- Oguzhan Cepni & Rangan Gupta & Daniel Pienaar & Christian Pierdzioch, 2022. "Forecasting the Realized Variance of Oil-Price Returns Using Machine-Learning: Is there a Role for U.S. State-Level Uncertainty?," Working Papers 202205, University of Pretoria, Department of Economics.
- Dondukova Oyuna & Liu Yaobin, 2021. "Forecasting the Crude Oil Prices Volatility With Stochastic Volatility Models," SAGE Open, , vol. 11(3), pages 21582440211, July.
- Pham, Son Duy & Nguyen, Thao Thac Thanh & Do, Hung Xuan, 2022. "Dynamic volatility connectedness between thermal coal futures and major cryptocurrencies: Evidence from China," Energy Economics, Elsevier, vol. 112(C).
- Elie Bouri & Riza Demirer & Rangan Gupta & Christian Pierdzioch, 2020. "Infectious Diseases, Market Uncertainty and Oil Market Volatility," Energies, MDPI, vol. 13(16), pages 1-8, August.
- Bei, Shuhua & Yang, Aijun & Pei, Haotian & Si, Xiaoli, 2023. "Price Risk Analysis using GARCH Family Models: Evidence from Shanghai Crude Oil Futures Market," Economic Modelling, Elsevier, vol. 125(C).
- Bradley T. Ewing & Farooq Malik & Hassan Anjum, 2019. "Forecasting value‐at‐risk in oil prices in the presence of volatility shifts," Review of Financial Economics, John Wiley & Sons, vol. 37(3), pages 341-350, July.
- Zhao, Lu-Tao & Wang, Dai-Song & Ren, Zhong-Yuan, 2024. "The impact of joint events on oil price volatility: Evidence from a dynamic graphical news analysis model," Economic Modelling, Elsevier, vol. 130(C).
- Xu Gong & Boqiang Lin, 2022. "Predicting the volatility of crude oil futures: The roles of leverage effects and structural changes," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 610-640, January.
- Chai, Jian & Xing, Li-Min & Zhou, Xiao-Yang & Zhang, Zhe George & Li, Jie-Xun, 2018. "Forecasting the WTI crude oil price by a hybrid-refined method," Energy Economics, Elsevier, vol. 71(C), pages 114-127.
- Pablo Cansado-Bravo & Carlos Rodríguez-Monroy, 2018. "Persistence of Oil Prices in Gas Import Prices and the Resilience of the Oil-Indexation Mechanism. The Case of Spanish Gas Import Prices," Energies, MDPI, vol. 11(12), pages 1-17, December.
- Nademi, Arash & Nademi, Younes, 2018. "Forecasting crude oil prices by a semiparametric Markov switching model: OPEC, WTI, and Brent cases," Energy Economics, Elsevier, vol. 74(C), pages 757-766.
- Yong Shi & Wei Dai & Wen Long & Bo Li, 2021. "Deep Kernel Gaussian Process Based Financial Market Predictions," Papers 2105.12293, arXiv.org.
- Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Antonio Díaz & Gonzalo García-Donato & Andrés Mora-Valencia, 2019. "Quantifying Risk in Traditional Energy and Sustainable Investments," Sustainability, MDPI, vol. 11(3), pages 1-22, January.
- Rangan Gupta & Christian Pierdzioch, 2023. "Do U.S. economic conditions at the state level predict the realized volatility of oil-price returns? A quantile machine-learning approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-22, December.
- Mawuli Segnon & Stelios Bekiros, 2019. "Forecasting Volatility in Cryptocurrency Markets," CQE Working Papers 7919, Center for Quantitative Economics (CQE), University of Muenster.