IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v80y2023ics0301420722007206.html
   My bibliography  Save this article

Can implied volatility predict returns on oil market? Evidence from Cross-Quantilogram Approach

Author

Listed:
  • Raggad, Bechir

Abstract

This paper employs the Cross-Quantilogram methodology proposed by Han et al. (2016) to investigate whether the implied volatility of crude oil (OVX) ameliorates the directional predictability of the oil price returns. Our main result documents the existence of a quantile predictability from OVX to WTI returns when the crude oil implied volatility is in the upper conditional quantile. On the other hand, no sufficient evidence in directional predictability is found when the OVX is at the lower to intermediate level. As a part of robustness check, the same analysis was conducted to the Brent returns. The pattern of directional predictability (similar signs) broadly corresponds with those observed on the WTI returns, however, it seems that OVX is more predictive for Brent than WTI. Particularly, the predictive power of OVX is found to be significant during periods of moderate to high OVX and mainly concentrated on lower to intermediate variations in Brent returns. As a result, implied volatility can be considered as a driver with respect to the forthcoming variations of the returns in the spot oil market. Insights gleaned from this study could have important implications for investors and policymakers in terms of portfolio and risk management decisions.

Suggested Citation

  • Raggad, Bechir, 2023. "Can implied volatility predict returns on oil market? Evidence from Cross-Quantilogram Approach," Resources Policy, Elsevier, vol. 80(C).
  • Handle: RePEc:eee:jrpoli:v:80:y:2023:i:c:s0301420722007206
    DOI: 10.1016/j.resourpol.2022.103277
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420722007206
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2022.103277?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benedetto, Francesco & Mastroeni, Loretta & Quaresima, Greta & Vellucci, Pierluigi, 2020. "Does OVX affect WTI and Brent oil spot variance? Evidence from an entropy analysis," Energy Economics, Elsevier, vol. 89(C).
    2. Lei Ruan, 2018. "Research on Sustainable Development of the Stock Market Based on VIX Index," Sustainability, MDPI, vol. 10(11), pages 1-12, November.
    3. Anupam Dutta, 2017. "Modeling and forecasting oil price risk: the role of implied volatility index," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 44(6), pages 1003-1016, November.
    4. Han, Heejoon & Linton, Oliver & Oka, Tatsushi & Whang, Yoon-Jae, 2016. "The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series," Journal of Econometrics, Elsevier, vol. 193(1), pages 251-270.
    5. Yannick Hoga, 2022. "Modeling Time-Varying Tail Dependence, with Application to Systemic Risk Forecasting," Journal of Financial Econometrics, Oxford University Press, vol. 20(5), pages 1007-1037.
    6. Apostolos Serletis & Ricardo Rangel-Ruiz, 2007. "Testing for Common Features in North American Energy Markets," World Scientific Book Chapters, in: Quantitative And Empirical Analysis Of Energy Markets, chapter 14, pages 172-187, World Scientific Publishing Co. Pte. Ltd..
    7. Galvao Jr., Antonio F., 2009. "Unit root quantile autoregression testing using covariates," Journal of Econometrics, Elsevier, vol. 152(2), pages 165-178, October.
    8. Aboura, Sofiane & Chevallier, Julien, 2013. "Leverage vs. feedback: Which Effect drives the oil market?," Finance Research Letters, Elsevier, vol. 10(3), pages 131-141.
    9. Aloui, Riadh & Aïssa, Mohamed Safouane Ben & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2014. "Dependence and extreme dependence of crude oil and natural gas prices with applications to risk management," Energy Economics, Elsevier, vol. 42(C), pages 332-342.
    10. Lutz Kilian, 2008. "The Economic Effects of Energy Price Shocks," Journal of Economic Literature, American Economic Association, vol. 46(4), pages 871-909, December.
    11. Troster, Victor & Shahbaz, Muhammad & Uddin, Gazi Salah, 2018. "Renewable energy, oil prices, and economic activity: A Granger-causality in quantiles analysis," Energy Economics, Elsevier, vol. 70(C), pages 440-452.
    12. Ji, Qiang & Fan, Ying, 2016. "Modelling the joint dynamics of oil prices and investor fear gauge," Research in International Business and Finance, Elsevier, vol. 37(C), pages 242-251.
    13. Cuihong Ye & Yiguo Chen & Roula Inglesi-Lotz & Tsangyao Chang, 2020. "CO2 emissions converge in China and G7 countries? Further evidence from Fourier quantile unit root test," Energy & Environment, , vol. 31(2), pages 348-363, March.
    14. Roger Koenker & Zhijie Xiao, 2004. "Unit Root Quantile Autoregression Inference," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 775-787, January.
    15. Agnolucci, Paolo, 2009. "Volatility in crude oil futures: A comparison of the predictive ability of GARCH and implied volatility models," Energy Economics, Elsevier, vol. 31(2), pages 316-321, March.
    16. Lv, Wendai, 2018. "Does the OVX matter for volatility forecasting? Evidence from the crude oil market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 916-922.
    17. Krzysztof Echaust & Małgorzata Just, 2021. "Tail Dependence between Crude Oil Volatility Index and WTI Oil Price Movements during the COVID-19 Pandemic," Energies, MDPI, vol. 14(14), pages 1-21, July.
    18. Liu, Bing-Yue & Ji, Qiang & Fan, Ying, 2017. "Dynamic return-volatility dependence and risk measure of CoVaR in the oil market: A time-varying mixed copula model," Energy Economics, Elsevier, vol. 68(C), pages 53-65.
    19. repec:dau:papers:123456789/9860 is not listed on IDEAS
    20. Jeng-Bau Lin & Wei Tsai, 2019. "The Relations of Oil Price Change with Fear Gauges in Global Political and Economic Environment," Energies, MDPI, vol. 12(15), pages 1-17, August.
    21. Szakmary, Andrew & Ors, Evren & Kyoung Kim, Jin & Davidson, Wallace III, 2003. "The predictive power of implied volatility: Evidence from 35 futures markets," Journal of Banking & Finance, Elsevier, vol. 27(11), pages 2151-2175, November.
    22. Li, Shuping & Li, Jianfeng & Lu, Xinsheng & Sun, Yihong, 2022. "Exploring the dynamic nonlinear relationship between crude oil price and implied volatility indices: A new perspective from MMV-MFDFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    23. Terence D. Agbeyegbe, 2015. "An inverted U‐shaped crude oil price return‐implied volatility relationship," Review of Financial Economics, John Wiley & Sons, vol. 27(1), pages 28-45, November.
    24. Lux, Thomas & Segnon, Mawuli & Gupta, Rangan, 2016. "Forecasting crude oil price volatility and value-at-risk: Evidence from historical and recent data," Energy Economics, Elsevier, vol. 56(C), pages 117-133.
    25. Stephanie Dunn & James Holloway, 2012. "The Pricing Of Crude Oil," RBA Bulletin (Print copy discontinued), Reserve Bank of Australia, pages 65-74, September.
    26. Shahzad, Syed Jawad Hussain & Kyei, Clement Kweku & Gupta, Rangan & Olson, Eric, 2021. "Investor sentiment and dollar-pound exchange rate returns: Evidence from over a century of data using a cross-quantilogram approach," Finance Research Letters, Elsevier, vol. 38(C).
    27. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    28. Victor Troster, 2018. "Testing for Granger-causality in quantiles," Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 850-866, September.
    29. Chen, Hongtao & Liu, Li & Li, Xiaolei, 2018. "The predictive content of CBOE crude oil volatility index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 837-850.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang, Hao-Wen & Chang, Tsangyao & Wang, Mei-Chih, 2024. "Revisit the impact of exchange rate on stock market returns during the pandemic period," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
    2. Yang, Xiaoming & Islam, Md. Monirul & Mentel, Grzegorz & Ahmad, Ashfaq & Vasa, László, 2024. "Synergistic dynamics unveiled: Interplay between rare earth prices, clean energy innovations, and tech companies' market resilience amidst the Covid-19 pandemic and Russia-Ukraine conflict," Resources Policy, Elsevier, vol. 89(C).
    3. Bechir Raggad & Elie Bouri, 2023. "Quantile Dependence between Crude Oil Returns and Implied Volatility: Evidence from Parametric and Nonparametric Tests," Mathematics, MDPI, vol. 11(3), pages 1-23, January.
    4. Hleil Alrweili & Ousama Ben-Salha, 2024. "Dynamic Asymmetric Volatility Spillover and Connectedness Network Analysis among Sectoral Renewable Energy Stocks," Mathematics, MDPI, vol. 12(12), pages 1-20, June.
    5. Tiwari, Aviral Kumar & Sharma, Gagan Deep & Rao, Amar & Hossain, Mohammad Razib & Dev, Dhairya, 2024. "Unraveling the crystal ball: Machine learning models for crude oil and natural gas volatility forecasting," Energy Economics, Elsevier, vol. 134(C).
    6. Zhang, Jiahao & Chen, Xiaodan & Wei, Yu & Bai, Lan, 2023. "Does the connectedness among fossil energy returns matter for renewable energy stock returns? Fresh insights from the Cross-Quantilogram analysis," International Review of Financial Analysis, Elsevier, vol. 88(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bechir Raggad & Elie Bouri, 2023. "Quantile Dependence between Crude Oil Returns and Implied Volatility: Evidence from Parametric and Nonparametric Tests," Mathematics, MDPI, vol. 11(3), pages 1-23, January.
    2. Krzysztof Echaust & Małgorzata Just, 2021. "Tail Dependence between Crude Oil Volatility Index and WTI Oil Price Movements during the COVID-19 Pandemic," Energies, MDPI, vol. 14(14), pages 1-21, July.
    3. Liu, Bing-Yue & Ji, Qiang & Fan, Ying, 2017. "Dynamic return-volatility dependence and risk measure of CoVaR in the oil market: A time-varying mixed copula model," Energy Economics, Elsevier, vol. 68(C), pages 53-65.
    4. Yang, Kun & Wei, Yu & Li, Shouwei & Liu, Liang & Wang, Lei, 2021. "Global financial uncertainties and China’s crude oil futures market: Evidence from interday and intraday price dynamics," Energy Economics, Elsevier, vol. 96(C).
    5. Maghyereh, Aktham & Abdoh, Hussein & Awartani, Basel, 2022. "Have returns and volatilities for financial assets responded to implied volatility during the COVID-19 pandemic?," Journal of Commodity Markets, Elsevier, vol. 26(C).
    6. Haukvik, Nicole & Cheraghali, Hamid & Molnár, Peter, 2024. "The role of investors’ fear in crude oil volatility forecasting," Research in International Business and Finance, Elsevier, vol. 70(PB).
    7. Fassas, Athanasios P. & Siriopoulos, Costas, 2021. "Implied volatility indices – A review," The Quarterly Review of Economics and Finance, Elsevier, vol. 79(C), pages 303-329.
    8. Mighri, Zouheir & Ragoubi, Hanen & Sarwar, Suleman & Wang, Yihan, 2022. "Quantile Granger causality between US stock market indices and precious metal prices," Resources Policy, Elsevier, vol. 76(C).
    9. Lee, Chi-Chuan & Lee, Chien-Chiang & Li, Yong-Yi, 2021. "Oil price shocks, geopolitical risks, and green bond market dynamics," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    10. Ji, Qiang & Liu, Bing-Yue & Nehler, Henrik & Uddin, Gazi Salah, 2018. "Uncertainties and extreme risk spillover in the energy markets: A time-varying copula-based CoVaR approach," Energy Economics, Elsevier, vol. 76(C), pages 115-126.
    11. Li, Jingyu & Liu, Ranran & Yao, Yanzhen & Xie, Qiwei, 2022. "Time-frequency volatility spillovers across the international crude oil market and Chinese major energy futures markets: Evidence from COVID-19," Resources Policy, Elsevier, vol. 77(C).
    12. Qiao, Gaoxiu & Ma, Xuekun & Jiang, Gongyue & Wang, Lu, 2024. "Crude oil volatility index forecasting: New evidence based on positive and negative jumps from Chinese stock market," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 415-437.
    13. Lee, Chi-Chuan & Lee, Chien-Chiang, 2020. "Insurance activity, real output, and geopolitical risk: Fresh evidence from BRICS," Economic Modelling, Elsevier, vol. 92(C), pages 207-215.
    14. Raggad, Bechir & Bouri, Elie, 2023. "Gold and crude oil: A time-varying causality across various market conditions," Resources Policy, Elsevier, vol. 86(PA).
    15. Yoon, Seong-Min, 2022. "On the interdependence between biofuel, fossil fuel and agricultural food prices: Evidence from quantile tests," Renewable Energy, Elsevier, vol. 199(C), pages 536-545.
    16. Lee, Chi-Chuan & Li, Yong-Yi, 2024. "Does environmental policy matter for renewable energy production and economic activity? Evidence from Granger causality in quantiles," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 225-237.
    17. Gong, Xu & Lin, Boqiang, 2018. "The incremental information content of investor fear gauge for volatility forecasting in the crude oil futures market," Energy Economics, Elsevier, vol. 74(C), pages 370-386.
    18. Benedetto, Francesco & Mastroeni, Loretta & Quaresima, Greta & Vellucci, Pierluigi, 2020. "Does OVX affect WTI and Brent oil spot variance? Evidence from an entropy analysis," Energy Economics, Elsevier, vol. 89(C).
    19. Jeng-Bau Lin & Chin-Chia Liang & Wei Tsai, 2019. "Nonlinear Relationships between Oil Prices and Implied Volatilities: Providing More Valuable Information," Sustainability, MDPI, vol. 11(14), pages 1-15, July.
    20. Chen, Hongtao & Liu, Li & Li, Xiaolei, 2018. "The predictive content of CBOE crude oil volatility index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 837-850.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:80:y:2023:i:c:s0301420722007206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.