Forecasting Oil Volatility Using a GARCH-MIDAS Approach: The Role of Global Economic Conditions
Author
Abstract
Suggested Citation
Download full text from publisher
To our knowledge, this item is not available for download. To find whether it is available, there are three options:1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.
References listed on IDEAS
- Walther, Thomas & Klein, Tony & Bouri, Elie, 2019.
"Exogenous drivers of Bitcoin and Cryptocurrency volatility – A mixed data sampling approach to forecasting,"
Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 63(C).
- Walther, Thomas & Klein, Tony & Bouri, Elie, 2018. "Exogenous Drivers of Bitcoin and Cryptocurrency Volatility – A Mixed Data Sampling Approach to Forecasting," QBS Working Paper Series 2018/02, Queen's University Belfast, Queen's Business School.
- Bonato, Matteo & Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2021.
"A note on investor happiness and the predictability of realized volatility of gold,"
Finance Research Letters, Elsevier, vol. 39(C).
- Matteo Bonato & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2020. "A Note on Investor Happiness and the Predictability of Realized Volatility of Gold," Working Papers 202004, University of Pretoria, Department of Economics.
- Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020.
"Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss,"
Journal of International Money and Finance, Elsevier, vol. 104(C).
- Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2019. "Forecasting Realized Oil-Price Volatility: The Role of Financial Stress and Asymmetric Loss," Working Papers 201903, University of Pretoria, Department of Economics.
- Christiane Baumeister & Dimitris Korobilis & Thomas K. Lee, 2022.
"Energy Markets and Global Economic Conditions,"
The Review of Economics and Statistics, MIT Press, vol. 104(4), pages 828-844, October.
- Christiane Baumeister & Dimitris Korobilis & Thomas K. Lee, 2020. "Energy Markets and Global Economic Conditions," CESifo Working Paper Series 8282, CESifo.
- Baumeister, Christiane & Korobilis, Dimitris & Lee, Thomas K., 2020. "Energy Markets and Global Economic Conditions," CEPR Discussion Papers 14580, C.E.P.R. Discussion Papers.
- Christiane Baumeister & Dimitris Korobilis & Thomas K. Lee, 2020. "Energy Markets and Global Economic Conditions," NBER Working Papers 27001, National Bureau of Economic Research, Inc.
- Christiane Baumeister & Dimitris Korobilis & Thomas K. Lee, 2020. "Energy Markets and Global Economic Conditions," Working Papers 2020_08, Business School - Economics, University of Glasgow.
- Duc Khuong Nguyen & Thomas Walther, 2020.
"Modeling and forecasting commodity market volatility with long‐term economic and financial variables,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 126-142, March.
- Nguyen, Duc Khuong & Walther, Thomas, 2017. "Modeling and forecasting commodity market volatility with long-term economic and financial variables," MPRA Paper 84464, University Library of Munich, Germany, revised Jan 2018.
- Thomas Walther & Duc Khuong Nguyen, 2018. "Modeling and Forecasting Commodity Market Volatility with Long-term Economic and Financial Variables," Working Papers on Finance 1824, University of St. Gallen, School of Finance.
- Matteo Bonato & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2020.
"Investor Happiness and Predictability of the Realized Volatility of Oil Price,"
Sustainability, MDPI, vol. 12(10), pages 1-11, May.
- Matteo Bonato & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2020. "Investor Happiness and Predictability of the Realized Volatility of Oil Price," Working Papers 202009, University of Pretoria, Department of Economics.
- Shiller, Robert J, 1981.
"Do Stock Prices Move Too Much to be Justified by Subsequent Changes in Dividends?,"
American Economic Review, American Economic Association, vol. 71(3), pages 421-436, June.
- Robert J. Shiller, 1980. "Do Stock Prices Move Too Much to be Justified by Subsequent Changes in Dividends?," NBER Working Papers 0456, National Bureau of Economic Research, Inc.
- Robert F. Engle & Eric Ghysels & Bumjean Sohn, 2013. "Stock Market Volatility and Macroeconomic Fundamentals," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 776-797, July.
- John Elder & Apostolos Serletis, 2010.
"Oil Price Uncertainty,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(6), pages 1137-1159, September.
- John Elder & Apostolos Serletis, 2010. "Oil Price Uncertainty," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(6), pages 1137-1159, September.
- Bernanke, Ben S, 1983.
"Nonmonetary Effects of the Financial Crisis in Propagation of the Great Depression,"
American Economic Review, American Economic Association, vol. 73(3), pages 257-276, June.
- Ben S. Bernanke, 1983. "Non-Monetary Effects of the Financial Crisis in the Propagation of the Great Depression," NBER Working Papers 1054, National Bureau of Economic Research, Inc.
- Lutz Kilian, 2009.
"Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market,"
American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
- Kilian, Lutz, 2006. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," CEPR Discussion Papers 5994, C.E.P.R. Discussion Papers.
- Francesco Ravazzolo & Joaquin Vespignani, 2020.
"World steel production: A new monthly indicator of global real economic activity,"
Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 53(2), pages 743-766, May.
- Francesco Ravazzolo & Joaquin Vespignani, 2017. "World steel production: A new monthly indicator of global real economic activity," CAMA Working Papers 2017-42, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Ravazzolo, Francesco & Vespignani, Joaquin, 2017. "World steel production: A new monthly indicator of global real economic activity," Working Papers 2017-08, University of Tasmania, Tasmanian School of Business and Economics.
- Michael McAleer & Marcelo Medeiros, 2008.
"Realized Volatility: A Review,"
Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
- Michael McAleer & Marcelo Cunha Medeiros, 2006. "Realized volatility: a review," Textos para discussão 531 Publication status: F, Department of Economics PUC-Rio (Brazil).
- Bonato, Matteo, 2019. "Realized correlations, betas and volatility spillover in the agricultural commodity market: What has changed?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 62(C), pages 184-202.
- Christiane Baumeister & James D. Hamilton, 2019.
"Structural Interpretation of Vector Autoregressions with Incomplete Identification: Revisiting the Role of Oil Supply and Demand Shocks,"
American Economic Review, American Economic Association, vol. 109(5), pages 1873-1910, May.
- Christiane J.S. Baumeister & James D. Hamilton, 2017. "Structural Interpretation of Vector Autoregressions with Incomplete Identification: Revisiting the Role of Oil Supply and Demand Shocks," NBER Working Papers 24167, National Bureau of Economic Research, Inc.
- Christiane Baumeister & James D. Hamilton, 2017. "Structural Interpretation of Vector Autoregressions with Incomplete Identification: Revisiting the Role of Oil Supply and Demand Shocks," CESifo Working Paper Series 6835, CESifo.
- Colacito, Riccardo & Engle, Robert F. & Ghysels, Eric, 2011. "A component model for dynamic correlations," Journal of Econometrics, Elsevier, vol. 164(1), pages 45-59, September.
- Yin, Libo & Zhou, Yimin, 2016.
"What drives long-term oil market volatility? Fundamentals versus speculation,"
Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 10, pages 1-26.
- Yin, Libo & Zhou, Yimin, 2016. "What drives long-term oil market volatility? Fundamentals versus Speculation," Economics Discussion Papers 2016-2, Kiel Institute for the World Economy (IfW Kiel).
- Lux, Thomas & Segnon, Mawuli & Gupta, Rangan, 2016. "Forecasting crude oil price volatility and value-at-risk: Evidence from historical and recent data," Energy Economics, Elsevier, vol. 56(C), pages 117-133.
- James D. Hamilton, 2019. "Measuring Global Economic Activity," NBER Working Papers 25778, National Bureau of Economic Research, Inc.
- Don Bredin & John Elder & Stilianos Fountas, 2010. "The Effects of Uncertainty about Oil Prices in G-7," Working Papers 200840, Geary Institute, University College Dublin.
- Das, Sonali & Demirer, Riza & Gupta, Rangan & Mangisa, Siphumlile, 2019.
"The effect of global crises on stock market correlations: Evidence from scalar regressions via functional data analysis,"
Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 132-147.
- Sonali Das & Riza Demirer & Rangan Gupta & Siphumlile Mangisa, 2019. "The Effect of Global Crises on Stock Market Correlations: Evidence from Scalar Regressions via Functional Data Analysis," Working Papers 201908, University of Pretoria, Department of Economics.
- Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," The Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
- Salisu, Afees A. & Ogbonna, Ahamuefula E., 2019.
"Another look at the energy-growth nexus: New insights from MIDAS regressions,"
Energy, Elsevier, vol. 174(C), pages 69-84.
- Afees A. Salisu & Ahamuefula Ephraim Ogbonna, 2017. "Forecasting GDP with energy series: ADL-MIDAS vs. Linear Time Series Models," Working Papers 035, Centre for Econometric and Allied Research, University of Ibadan.
- Pan, Zhiyuan & Wang, Yudong & Wu, Chongfeng & Yin, Libo, 2017. "Oil price volatility and macroeconomic fundamentals: A regime switching GARCH-MIDAS model," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 130-142.
- Wei, Yu & Liu, Jing & Lai, Xiaodong & Hu, Yang, 2017. "Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 141-150.
- Georgios Bampinas & Theodore Panagiotidis, 2017.
"Oil and stock markets before and after financial crises: A local Gaussian correlation approach,"
Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 37(12), pages 1179-1204, December.
- Georgios Bampinas & Theodore Panagiotidis, 2017. "Oil and stock markets before and after financial crises : a local Gaussian correlation approach," Bank of Estonia Working Papers wp2016-11, Bank of Estonia, revised 06 Feb 2017.
- Clements, Michael P & Galvão, Ana Beatriz, 2008. "Macroeconomic Forecasting With Mixed-Frequency Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 546-554.
- Bampinas Georgios & Panagiotidis Theodore, 2015.
"On the relationship between oil and gold before and after financial crisis: linear, nonlinear and time-varying causality testing,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(5), pages 657-668, December.
- G. Bampinas & T. Panagiotidis, 2015. "On the relationship between oil and gold before and after financial crisis: Linear, nonlinear and time-varying causality testing," Working Paper series 15-04, Rimini Centre for Economic Analysis.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Salisu, Afees A. & Gupta, Rangan & Demirer, Riza, 2022.
"Global financial cycle and the predictability of oil market volatility: Evidence from a GARCH-MIDAS model,"
Energy Economics, Elsevier, vol. 108(C).
- Afees A. Salisu & Rangan Gupta & Riza Demirer, 2021. "Global Financial Cycle and the Predictability of Oil Market Volatility: Evidence from a GARCH-MIDAS Model," Working Papers 202121, University of Pretoria, Department of Economics.
- Riza Demirer & Rangan Gupta & Jacobus Nel & Christian Pierdzioch, 2020. "Effect of Rare Disaster Risks on Crude Oil: Evidence from El Nino from Over 140 Years of Data," Working Papers 2020104, University of Pretoria, Department of Economics.
- Luo, Jiawen & Demirer, Riza & Gupta, Rangan & Ji, Qiang, 2022.
"Forecasting oil and gold volatilities with sentiment indicators under structural breaks,"
Energy Economics, Elsevier, vol. 105(C).
- Jiawen Luo & Riza Demirer & Rangan Gupta & Qiang Ji, 2021. "Forecasting Oil and Gold Volatilities with Sentiment Indicators Under Structural Breaks," Working Papers 202130, University of Pretoria, Department of Economics.
- Afees A. Salisu & Philip C. Omoke & Abdulsalam Abidemi Sikiru, 2023. "Geopolitical risk and global financial cycle: Some forecasting experiments," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 3-16, January.
- Rangan Gupta & Christian Pierdzioch, 2021.
"Forecasting the Volatility of Crude Oil: The Role of Uncertainty and Spillovers,"
Energies, MDPI, vol. 14(14), pages 1-15, July.
- Rangan Gupta & Christian Pierdzioch, 2021. "Forecasting the Volatility of Crude Oil: The Role of Uncertainty and Spillovers," Working Papers 202135, University of Pretoria, Department of Economics.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Afees A. Salisu & Rangan Gupta & Elie Bouri & Qiang Ji, 2022. "Mixed‐frequency forecasting of crude oil volatility based on the information content of global economic conditions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 134-157, January.
- Salisu, Afees A. & Gupta, Rangan & Demirer, Riza, 2022.
"Global financial cycle and the predictability of oil market volatility: Evidence from a GARCH-MIDAS model,"
Energy Economics, Elsevier, vol. 108(C).
- Afees A. Salisu & Rangan Gupta & Riza Demirer, 2021. "Global Financial Cycle and the Predictability of Oil Market Volatility: Evidence from a GARCH-MIDAS Model," Working Papers 202121, University of Pretoria, Department of Economics.
- Rangan Gupta & Christian Pierdzioch, 2023. "Do U.S. economic conditions at the state level predict the realized volatility of oil-price returns? A quantile machine-learning approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-22, December.
- Çepni, Oğuzhan & Gupta, Rangan & Pienaar, Daniel & Pierdzioch, Christian, 2022.
"Forecasting the realized variance of oil-price returns using machine learning: Is there a role for U.S. state-level uncertainty?,"
Energy Economics, Elsevier, vol. 114(C).
- Oguzhan Cepni & Rangan Gupta & Daniel Pienaar & Christian Pierdzioch, 2022. "Forecasting the Realized Variance of Oil-Price Returns Using Machine-Learning: Is there a Role for U.S. State-Level Uncertainty?," Working Papers 202205, University of Pretoria, Department of Economics.
- Demirer, Riza & Gupta, Rangan & Pierdzioch, Christian & Shahzad, Syed Jawad Hussain, 2020.
"The predictive power of oil price shocks on realized volatility of oil: A note,"
Resources Policy, Elsevier, vol. 69(C).
- Riza Demirer & Rangan Gupta & Christian Pierdzioch & Syed Jawad Hussain Shahzad, 2020. "The Predictive Power of Oil Price Shocks on Realized Volatility of Oil: A Note," Working Papers 202044, University of Pretoria, Department of Economics.
- Salisu, Afees A. & Gupta, Rangan, 2021.
"Oil shocks and stock market volatility of the BRICS: A GARCH-MIDAS approach,"
Global Finance Journal, Elsevier, vol. 48(C).
- Afees A. Salisu & Rangan Gupta, 2019. "Oil Shocks and Stock Market Volatility of the BRICS: A GARCH-MIDAS Approach," Working Papers 201976, University of Pretoria, Department of Economics.
- Salisu, Afees A. & Gupta, Rangan & Bouri, Elie & Ji, Qiang, 2020.
"The role of global economic conditions in forecasting gold market volatility: Evidence from a GARCH-MIDAS approach,"
Research in International Business and Finance, Elsevier, vol. 54(C).
- Afees A. Salisu & Rangan Gupta & Elie Bouri & Qiang Ji, 2020. "The Role of Global Economic Conditions in Forecasting Gold Market Volatility: Evidence from a GARCH-MIDAS Approach," Working Papers 202043, University of Pretoria, Department of Economics.
- Luo, Jiawen & Demirer, Riza & Gupta, Rangan & Ji, Qiang, 2022.
"Forecasting oil and gold volatilities with sentiment indicators under structural breaks,"
Energy Economics, Elsevier, vol. 105(C).
- Jiawen Luo & Riza Demirer & Rangan Gupta & Qiang Ji, 2021. "Forecasting Oil and Gold Volatilities with Sentiment Indicators Under Structural Breaks," Working Papers 202130, University of Pretoria, Department of Economics.
- Rangan Gupta & Christian Pierdzioch, 2021.
"Climate Risks and the Realized Volatility Oil and Gas Prices: Results of an Out-of-Sample Forecasting Experiment,"
Energies, MDPI, vol. 14(23), pages 1-18, December.
- Rangan Gupta & Christian Pierdzioch, 2021. "Climate Risks and the Realized Volatility Oil and Gas Prices: Results of an Out-of-Sample Forecasting Experiment," Working Papers 202175, University of Pretoria, Department of Economics.
- Lyu, Yongjian & Qin, Fanshu & Ke, Rui & Wei, Yu & Kong, Mengzhen, 2024. "Does mixed frequency variables help to forecast value at risk in the crude oil market?," Resources Policy, Elsevier, vol. 88(C).
- Gupta, Rangan & Nielsen, Joshua & Pierdzioch, Christian, 2024.
"Stock market bubbles and the realized volatility of oil price returns,"
Energy Economics, Elsevier, vol. 132(C).
- Rangan Gupta & Joshua Nielsen & Christian Pierdzioch, 2023. "Stock Market Bubbles and the Realized Volatility of Oil Price Returns," Working Papers 202325, University of Pretoria, Department of Economics.
- Afees A. Salisu & Riza Demirer & Rangan Gupta, 2023. "Technological Shocks and Stock Market Volatility Over a Century: A GARCH-MIDAS Approach," Working Papers 202308, University of Pretoria, Department of Economics.
- Yaya, OlaOluwa S. & Ogbonna, Ahamuefula E. & Vo, Xuan Vinh, 2022.
"Oil shocks and volatility of green investments: GARCH-MIDAS analyses,"
Resources Policy, Elsevier, vol. 78(C).
- Yaya, OlaOluwa S & Ogbonna, Ahamuefula & Vo, Xuan Vinh, 2022. "Oil shocks and volatility of green investments: GARCH-MIDAS analyses," MPRA Paper 113707, University Library of Munich, Germany.
- Salisu, Afees A. & Gupta, Rangan & Bouri, Elie, 2023.
"Testing the forecasting power of global economic conditions for the volatility of international REITs using a GARCH-MIDAS approach,"
The Quarterly Review of Economics and Finance, Elsevier, vol. 88(C), pages 303-314.
- Afees A. Salisu & Rangan Gupta & Elie Bouri, 2022. "Testing the Forecasting Power of Global Economic Conditions for the Volatility of International REITs using a GARCH-MIDAS Approach," Working Papers 202211, University of Pretoria, Department of Economics.
- Rangan Gupta & Christian Pierdzioch, 2021.
"Forecasting the Volatility of Crude Oil: The Role of Uncertainty and Spillovers,"
Energies, MDPI, vol. 14(14), pages 1-15, July.
- Rangan Gupta & Christian Pierdzioch, 2021. "Forecasting the Volatility of Crude Oil: The Role of Uncertainty and Spillovers," Working Papers 202135, University of Pretoria, Department of Economics.
- Duc Khuong Nguyen & Thomas Walther, 2020.
"Modeling and forecasting commodity market volatility with long‐term economic and financial variables,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 126-142, March.
- Nguyen, Duc Khuong & Walther, Thomas, 2017. "Modeling and forecasting commodity market volatility with long-term economic and financial variables," MPRA Paper 84464, University Library of Munich, Germany, revised Jan 2018.
- Thomas Walther & Duc Khuong Nguyen, 2018. "Modeling and Forecasting Commodity Market Volatility with Long-term Economic and Financial Variables," Working Papers on Finance 1824, University of St. Gallen, School of Finance.
- Baumeister, Christiane & Guérin, Pierre, 2021.
"A comparison of monthly global indicators for forecasting growth,"
International Journal of Forecasting, Elsevier, vol. 37(3), pages 1276-1295.
- Christiane Baumeister & Pierre Guérin, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," NBER Working Papers 28014, National Bureau of Economic Research, Inc.
- Baumeister, Christiane & Guerin, Pierre, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," CEPR Discussion Papers 15403, C.E.P.R. Discussion Papers.
- Christiane Baumeister & Pierre Guérin, 2020. "A comparison of monthly global indicators for forecasting growth," CAMA Working Papers 2020-93, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Christiane Baumeister & Pierre Guérin, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," CESifo Working Paper Series 8656, CESifo.
- Afees A. Salisu & Rangan Gupta & Oguzhan Cepni & Petre Caraiani, 2024.
"Oil shocks and state-level stock market volatility of the United States: a GARCH-MIDAS approach,"
Review of Quantitative Finance and Accounting, Springer, vol. 63(4), pages 1473-1510, November.
- Afees A. Salisu & Rangan Gupta & Oguzhan Cepni & Petre Caraiani, 2023. "Oil Shocks and State-Level Stock Market Volatility of the United States: A GARCH-MIDAS Approach," Working Papers 202327, University of Pretoria, Department of Economics.
- Bonnier, Jean-Baptiste, 2022. "Forecasting crude oil volatility with exogenous predictors: As good as it GETS?," Energy Economics, Elsevier, vol. 111(C).
- O-Chia Chuang & Chenxu Yang, 2022. "Identifying the Determinants of Crude Oil Market Volatility by the Multivariate GARCH-MIDAS Model," Energies, MDPI, vol. 15(8), pages 1-14, April.
More about this item
Keywords
Energy Markets Volatility; Global Economic Conditions; Mixed-Frequency;All these keywords.
JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
- Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ENE-2020-06-22 (Energy Economics)
- NEP-FOR-2020-06-22 (Forecasting)
- NEP-MAC-2020-06-22 (Macroeconomics)
- NEP-SEA-2020-06-22 (South East Asia)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:202051. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.