IDEAS home Printed from https://ideas.repec.org/r/eee/empfin/v18y2011i2p321-340.html
   My bibliography  Save this item

When machines read the news: Using automated text analytics to quantify high frequency news-implied market reactions

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Adam Clements & Neda Todorova, 2014. "The impact of information flow and trading activity on gold and oil futures volatility," NCER Working Paper Series 102, National Centre for Econometric Research.
  2. Massa, Massimo & von Beschwitz, Bastian & Keim, Donald B, 2015. "First to ?Read? the News: News Analytics and Institutional Trading," CEPR Discussion Papers 10534, C.E.P.R. Discussion Papers.
  3. Gupta, Kartick & Banerjee, Rajabrata, 2019. "Does OPEC news sentiment influence stock returns of energy firms in the United States?," Energy Economics, Elsevier, vol. 77(C), pages 34-45.
  4. Bastian von Beschwitz & Donald B Keim & Massimo Massa, 2020. "First to “Read” the News: News Analytics and Algorithmic Trading," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 10(1), pages 122-178.
  5. David E. Allen & Michael McAleer & Abhay K. Singh, 2019. "Daily market news sentiment and stock prices," Applied Economics, Taylor & Francis Journals, vol. 51(30), pages 3212-3235, June.
  6. Yen-Ju Hsu & Yang-Cheng Lu & J. Jimmy Yang, 2021. "News sentiment and stock market volatility," Review of Quantitative Finance and Accounting, Springer, vol. 57(3), pages 1093-1122, October.
  7. Junni L. Zhang & Wolfgang Karl Hardle & Cathy Y. Chen & Elisabeth Bommes, 2020. "Distillation of News Flow into Analysis of Stock Reactions," Papers 2009.10392, arXiv.org.
  8. Carlini, Federico & Farina, Vincenzo & Gufler, Ivan & Previtali, Daniele, 2024. "Do stress and overstatement in the news affect the stock market? Evidence from COVID-19 news in The Wall Street Journal," International Review of Financial Analysis, Elsevier, vol. 93(C).
  9. Daniel Martin Katz & Michael J Bommarito II & Tyler Soellinger & James Ming Chen, 2015. "Law on the Market? Abnormal Stock Returns and Supreme Court Decision-Making," Papers 1508.05751, arXiv.org, revised May 2017.
  10. Fabrizio Lillo & Salvatore Miccich� & Michele Tumminello & Jyrki Piilo & Rosario N. Mantegna, 2015. "How news affects the trading behaviour of different categories of investors in a financial market," Quantitative Finance, Taylor & Francis Journals, vol. 15(2), pages 213-229, February.
  11. Ignacio Arango & Diego A. Agudelo, 2017. "How does information disclosure affect liquidity?Evidence from an Emerging Market," Documentos de Trabajo de Valor Público 16990, Universidad EAFIT.
  12. Chinmoy Ghosh & Cristian Pinto‐Gutiérrez & Jaideep Shenoy, 2024. "Does negative news disclosure induce better decision‐making? Evidence from acquisitions," The Financial Review, Eastern Finance Association, vol. 59(2), pages 325-372, May.
  13. Smales, Lee A., 2014. "Non-scheduled news arrival and high-frequency stock market dynamics," Research in International Business and Finance, Elsevier, vol. 32(C), pages 122-138.
  14. Rodrigo Herrera & Adam Clements, 2020. "A marked point process model for intraday financial returns: modeling extreme risk," Empirical Economics, Springer, vol. 58(4), pages 1575-1601, April.
  15. Li, Cong-Cong & Xu, Hai-Chuan & Zhou, Wei-Xing, 2020. "News coverage and portfolio returns: Evidence from China," Pacific-Basin Finance Journal, Elsevier, vol. 60(C).
  16. Maslyuk-Escobedo, Svetlana & Rotaru, Kristian & Dokumentov, Alexander, 2017. "News sentiment and jumps in energy spot and futures markets," Pacific-Basin Finance Journal, Elsevier, vol. 45(C), pages 186-210.
  17. Smales, Lee A., 2016. "News sentiment and bank credit risk," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 37-61.
  18. Ballinari, Daniele & Audrino, Francesco & Sigrist, Fabio, 2022. "When does attention matter? The effect of investor attention on stock market volatility around news releases," International Review of Financial Analysis, Elsevier, vol. 82(C).
  19. Wang, Yuchen & Wang, Xiaoming, 2023. "Economic policy uncertainty and information intermediary: The case of short seller," Economic Modelling, Elsevier, vol. 120(C).
  20. D Aromi & A Clements, 2018. "Media attention and crude oil volatility: Is there any 'new' news in the newspaper?," NCER Working Paper Series 118, National Centre for Econometric Research.
  21. Donald B. Keim & Massimo Massa & Bastian von Beschwitz, 2018. "First to \"Read\" the News: New Analytics and Algorithmic Trading," International Finance Discussion Papers 1233, Board of Governors of the Federal Reserve System (U.S.).
  22. Khuu, Joyce & Durand, Robert B. & Smales, Lee A., 2016. "Melancholia and Japanese stock returns – 2003 to 2012," Pacific-Basin Finance Journal, Elsevier, vol. 40(PB), pages 424-437.
  23. Yang, Ann Shawing, 2020. "Misinformation corrections of corporate news: Corporate clarification announcements," Pacific-Basin Finance Journal, Elsevier, vol. 61(C).
  24. Ammann, Manuel & Frey, Roman & Verhofen, Michael, 2012. "Do Newspaper Articles Predict Aggregate Stock Returns?," Working Papers on Finance 1204, University of St. Gallen, School of Finance.
  25. Jacob Boudoukh & Ronen Feldman & Shimon Kogan & Matthew Richardson, 2013. "Which News Moves Stock Prices? A Textual Analysis," NBER Working Papers 18725, National Bureau of Economic Research, Inc.
  26. Dugast, J., 2013. "Limited attention and news arrival in limit order markets," Working papers 449, Banque de France.
  27. David E. Allen & Michael McAleer & Abhay K. Singh, 2014. "Machine news and volatility: The Dow Jones Industrial Average and the TRNA sentiment series," Working Papers in Economics 14/04, University of Canterbury, Department of Economics and Finance.
  28. Diego A. Agudelo & Ignacio Arango, 2017. "How does information disclosure affect liquidity? Evidence from an Emerging Market," Documentos de Trabajo de Valor Público 16944, Universidad EAFIT.
  29. Weng, Futian & Zhang, Hongwei & Yang, Cai, 2021. "Volatility forecasting of crude oil futures based on a genetic algorithm regularization online extreme learning machine with a forgetting factor: The role of news during the COVID-19 pandemic," Resources Policy, Elsevier, vol. 73(C).
  30. Andrew Todd & James Bowden & Yashar Moshfeghi, 2024. "Text‐based sentiment analysis in finance: Synthesising the existing literature and exploring future directions," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(1), March.
  31. Füss, Roland & Grabellus, Markus & Mager, Ferdinand & Stein, Michael, 2018. "Something in the air: Information density, news surprises, and price jumps," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 53(C), pages 50-75.
  32. Katherine B. Ensor & Yu Han & Barbara Ostdiek & Stuart M. Turnbull, 0. "Dynamic jump intensities and news arrival in oil futures markets," Journal of Asset Management, Palgrave Macmillan, vol. 0, pages 1-34.
  33. Takayuki Mizuno & Takaaki Ohnishi & Tsutomu Watanabe, 2015. "Novel and topical business news and their impact on stock market activities," Papers 1507.06477, arXiv.org.
  34. Kohonen, Anssi, 2012. "On detection of volatility spillovers in simultaneously open stock markets," MPRA Paper 37504, University Library of Munich, Germany.
  35. Akihiro Omura & Neda Todorova, 2019. "The quantile dependence of commodity futures markets on news sentiment," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(7), pages 818-837, July.
  36. Takayuki Mizuno & Takaaki Ohnishi & Tsutomu Watanabe, 2015. "Novel and topical business news and their impact on stock market activities," CARF F-Series CARF-F-366, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
  37. Rognone, Lavinia & Hyde, Stuart & Zhang, S. Sarah, 2020. "News sentiment in the cryptocurrency market: An empirical comparison with Forex," International Review of Financial Analysis, Elsevier, vol. 69(C).
  38. Wei, Yu-Chen & Lu, Yang-Cheng & Chen, Jen-Nan & Hsu, Yen-Ju, 2017. "Informativeness of the market news sentiment in the Taiwan stock market," The North American Journal of Economics and Finance, Elsevier, vol. 39(C), pages 158-181.
  39. Apergis, Nicholas, 2015. "Newswire messages and sovereign credit ratings: Evidence from European countries under austerity reform programmes," International Review of Financial Analysis, Elsevier, vol. 39(C), pages 54-62.
  40. Svetlana Borovkova & Diego Mahakena, 2015. "News, volatility and jumps: the case of natural gas futures," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1217-1242, July.
  41. Arango, Ignacio & Agudelo, Diego A., 2019. "How does information disclosure affect liquidity? Evidence from an emerging market," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
  42. David E Allen & Michael McAleer & Abhay K Singh, 2017. "An entropy-based analysis of the relationship between the DOW JONES Index and the TRNA Sentiment series," Applied Economics, Taylor & Francis Journals, vol. 49(7), pages 677-692, February.
  43. Ahmad, Khurshid & Han, JingGuang & Hutson, Elaine & Kearney, Colm & Liu, Sha, 2016. "Media-expressed negative tone and firm-level stock returns," Journal of Corporate Finance, Elsevier, vol. 37(C), pages 152-172.
  44. Gabriele Ranco & Ilaria Bordino & Giacomo Bormetti & Guido Caldarelli & Fabrizio Lillo & Michele Treccani, 2014. "Coupling news sentiment with web browsing data improves prediction of intra-day price dynamics," Papers 1412.3948, arXiv.org, revised Dec 2015.
  45. repec:hum:wpaper:sfb649dp2015-005 is not listed on IDEAS
  46. Gabriele Ranco & Ilaria Bordino & Giacomo Bormetti & Guido Caldarelli & Fabrizio Lillo & Michele Treccani, 2016. "Coupling News Sentiment with Web Browsing Data Improves Prediction of Intra-Day Price Dynamics," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-14, January.
  47. Joel Hasbrouck, 2021. "Rejoinder on: Price Discovery in High Resolution," Journal of Financial Econometrics, Oxford University Press, vol. 19(3), pages 465-471.
  48. Bianconi, Marcelo & Hua, Xiaxin & Tan, Chih Ming, 2015. "Determinants of systemic risk and information dissemination," International Review of Economics & Finance, Elsevier, vol. 38(C), pages 352-368.
  49. Robert F. Engle & Martin Klint Hansen & Asger Lunde, 2012. "And Now, The Rest of the News: Volatility and Firm Specific News Arrival," CREATES Research Papers 2012-56, Department of Economics and Business Economics, Aarhus University.
  50. Clements, A.E. & Hurn, A.S. & Volkov, V.V., 2016. "Common trends in global volatility," Journal of International Money and Finance, Elsevier, vol. 67(C), pages 194-214.
  51. Christos Kollias & Stephanos Papadamou & Costas Siriopoulos, 2013. "European Markets’ Reactions to Exogenous Shocks: A High Frequency Data Analysis of the 2005 London Bombings," IJFS, MDPI, vol. 1(4), pages 1-14, November.
  52. Alexander Koch & Toan Luu Duc Huynh & Mei Wang, 2024. "News sentiment and international equity markets during BREXIT period: A textual and connectedness analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(1), pages 5-34, January.
  53. Jianfei Zhang & Mathieu Rosenbaum, 2023. "Towards systematic intraday news screening: a liquidity-focused approach," Papers 2304.05115, arXiv.org.
  54. Justina Deveikyte & Helyette Geman & Carlo Piccari & Alessandro Provetti, 2020. "A Sentiment Analysis Approach to the Prediction of Market Volatility," Papers 2012.05906, arXiv.org.
  55. Monika Bolek & Cezary Bolek, 2024. "Covid-19 Data Manipulation and Reaction of Stock Markets," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 31(1), pages 137-164, March.
  56. Apergis, Nicholas, 2015. "Forecasting Credit Default Swaps (CDSs) spreads with newswire messages: Evidence from European countries under financial distress," Economics Letters, Elsevier, vol. 136(C), pages 92-94.
  57. Ferdinand Graf, 2011. "Mechanically Extracted Company Signals and their Impact on Stock and Credit Markets," Working Paper Series of the Department of Economics, University of Konstanz 2011-18, Department of Economics, University of Konstanz.
  58. Gao, Yang & Wang, Yaojun & Wang, Chao & Liu, Chao, 2018. "Internet attention and information asymmetry: Evidence from Qihoo 360 search data on the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 802-811.
  59. Rui Fan & Oleksandr Talavera & Vu Tran, 2020. "Social media bots and stock markets," European Financial Management, European Financial Management Association, vol. 26(3), pages 753-777, June.
  60. Siikanen, Milla & Kanniainen, Juho & Valli, Jaakko, 2017. "Limit order books and liquidity around scheduled and non-scheduled announcements: Empirical evidence from NASDAQ Nordic," Finance Research Letters, Elsevier, vol. 21(C), pages 264-271.
  61. Stefan Feuerriegel & Helmut Prendinger, 2018. "News-based trading strategies," Papers 1807.06824, arXiv.org.
  62. Gianluca Anese & Marco Corazza & Michele Costola & Loriana Pelizzon, 2023. "Impact of public news sentiment on stock market index return and volatility," Computational Management Science, Springer, vol. 20(1), pages 1-36, December.
  63. Nicholas Apergis & Ioannis Pragidis, 2019. "Stock Price Reactions to Wire News from the European Central Bank: Evidence from Changes in the Sentiment Tone and International Market Indexes," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 25(1), pages 91-112, February.
  64. Kohonen, Anssi, 2013. "On detection of volatility spillovers in overlapping stock markets," Journal of Empirical Finance, Elsevier, vol. 22(C), pages 140-158.
  65. Massimiliano Caporin & Francesco Poli, 2017. "Building News Measures from Textual Data and an Application to Volatility Forecasting," Econometrics, MDPI, vol. 5(3), pages 1-46, August.
  66. Francisco Jareño & Ana Escribano & Zaghum Umar, 2023. "The impact of the COVID-19 outbreak on the connectedness of the BRICS’s term structure," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-12, December.
  67. Adam Clements & Yin Liao, "undated". "News and network structures in equity market volatility," NCER Working Paper Series 110, National Centre for Econometric Research.
  68. Danilo Vassallo & Giacomo Bormetti & Fabrizio Lillo, 2019. "A tale of two sentiment scales: Disentangling short-run and long-run components in multivariate sentiment dynamics," Papers 1910.01407, arXiv.org, revised Sep 2020.
  69. Takayuki Mizuno & Takaaki Ohnishi & Tsutomu Watanabe, 2015. "Novel and topical business news and their impact on stock market activities," UTokyo Price Project Working Paper Series 055, University of Tokyo, Graduate School of Economics.
  70. Andreas Storkenmaier & Martin Wagener & Christof Weinhardt, 2012. "Public information in fragmented markets," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 26(2), pages 179-215, June.
  71. Akhtaruzzaman, Md & Boubaker, Sabri & Umar, Zaghum, 2022. "COVID–19 media coverage and ESG leader indices," Finance Research Letters, Elsevier, vol. 45(C).
  72. Gabriele Ranco & Darko Aleksovski & Guido Caldarelli & Miha Grčar & Igor Mozetič, 2015. "The Effects of Twitter Sentiment on Stock Price Returns," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-21, September.
  73. Durand, Robert B. & Khuu, Joyce & Smales, Lee A., 2023. "Lost in translation. When sentiment metrics for one market are derived from two different languages," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
  74. Yuna Hao & Behrang Vand & Benjamin Manrique Delgado & Simone Baldi, 2023. "Market Manipulation in Stock and Power Markets: A Study of Indicator-Based Monitoring and Regulatory Challenges," Energies, MDPI, vol. 16(4), pages 1-28, February.
  75. Lee A. Smales, 2016. "Time-varying relationship of news sentiment, implied volatility and stock returns," Applied Economics, Taylor & Francis Journals, vol. 48(51), pages 4942-4960, November.
  76. Smales, Lee A., 2015. "Time-variation in the impact of news sentiment," International Review of Financial Analysis, Elsevier, vol. 37(C), pages 40-50.
  77. Adam E. Clements & Neda Todorova, 2016. "Information Flow, Trading Activity and Commodity Futures Volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(1), pages 88-104, January.
  78. Clements, A.E. & Liao, Y., 2020. "Firm-specific information and systemic risk," Economic Modelling, Elsevier, vol. 90(C), pages 480-493.
  79. Haroon, Omair & Rizvi, Syed Aun R., 2020. "COVID-19: Media coverage and financial markets behavior—A sectoral inquiry," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
  80. Fengler, Matthias & Polivka, Jeannine, 2021. "Proxy-identification of a structural MGARCH model for asset returns," Economics Working Paper Series 2103, University of St. Gallen, School of Economics and Political Science, revised Oct 2024.
  81. Smales, Lee A., 2015. "Asymmetric volatility response to news sentiment in gold futures," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 34(C), pages 161-172.
  82. Smales, Lee A., 2014. "News sentiment and the investor fear gauge," Finance Research Letters, Elsevier, vol. 11(2), pages 122-130.
  83. Ho, Kin-Yip & Shi, Yanlin & Zhang, Zhaoyong, 2013. "How does news sentiment impact asset volatility? Evidence from long memory and regime-switching approaches," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 436-456.
  84. Ersan, Oguz & Simsir, Serif Aziz & Simsek, Koray D. & Hasan, Afan, 2021. "The speed of stock price adjustment to corporate announcements: Insights from Turkey," Emerging Markets Review, Elsevier, vol. 47(C).
  85. Gillam, Robert A. & Guerard, John B. & Cahan, Rochester, 2015. "News volume information: Beyond earnings forecasting in a global stock selection model," International Journal of Forecasting, Elsevier, vol. 31(2), pages 575-581.
  86. Adam Clements & Joanne Fuller & Vasilios Papalexiou, 2015. "Public news flow in intraday component models for trading activity and volatility," NCER Working Paper Series 106, National Centre for Econometric Research.
  87. Smales, Lee A., 2014. "News sentiment in the gold futures market," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 275-286.
  88. Tom Marty & Bruce Vanstone & Tobias Hahn, 2020. "News media analytics in finance: a survey," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(2), pages 1385-1434, June.
  89. Fengler, Matthias & Polivka, Jeanine, 2022. "Identifying Structural Shocks to Volatility through a Proxy-MGARCH Model," VfS Annual Conference 2022 (Basel): Big Data in Economics 264010, Verein für Socialpolitik / German Economic Association.
  90. Rühl, Tobias R. & Stein, Michael, 2015. "The impact of ECB macro-announcements on bid–ask spreads of European blue chips," Journal of Empirical Finance, Elsevier, vol. 31(C), pages 54-71.
  91. Zhang, Junru & Zhang, Zhaoyong, 2021. "CSR, Media and Stock Illiquidity: Evidence from Chinese Listed Financial Firms," Finance Research Letters, Elsevier, vol. 41(C).
  92. Katherine B. Ensor & Yu Han & Barbara Ostdiek & Stuart M. Turnbull, 2020. "Dynamic jump intensities and news arrival in oil futures markets," Journal of Asset Management, Palgrave Macmillan, vol. 21(4), pages 292-325, July.
  93. Liu, Jun & Wu, Kai & Zhou, Ming, 2023. "News tone, investor sentiment, and liquidity premium," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 167-181.
  94. Zhang, Junni L. & Härdle, Wolfgang Karl & Chen, Cathy Y. & Bommes, Elisabeth, 2015. "Distillation of news flow into analysis of stock reactions," SFB 649 Discussion Papers 2015-005, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  95. Riordan, Ryan & Storkenmaier, Andreas & Wagener, Martin & Sarah Zhang, S., 2013. "Public information arrival: Price discovery and liquidity in electronic limit order markets," Journal of Banking & Finance, Elsevier, vol. 37(4), pages 1148-1159.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.