IDEAS home Printed from https://ideas.repec.org/p/zbw/safewp/322.html
   My bibliography  Save this paper

Impact of public news sentiment on stock market index return and volatility

Author

Listed:
  • Anese, Gianluca
  • Corazza, Marco
  • Costola, Michele
  • Pelizzon, Loriana

Abstract

Recent advances in natural language processing have contributed to the development of market sentiment measures through text content analysis in news providers and social media. The effectiveness of these sentiment variables depends on the implemented techniques and the type of source on which they are based. In this paper, we investigate the impact of the release of public financial news on the S&P 500. Using automatic labeling techniques based on either stock index returns or dictionaries, we apply a classification problem based on long short-term memory neural networks to extract alternative proxies of investor sentiment. Our findings provide evidence that there exists an impact of those sentiments in the market on a 20-minute time frame. We find that dictionary-based sentiment provides meaningful results with respect to those based on stock index returns, which partly fails in the mapping process between news and financial returns.

Suggested Citation

  • Anese, Gianluca & Corazza, Marco & Costola, Michele & Pelizzon, Loriana, 2021. "Impact of public news sentiment on stock market index return and volatility," SAFE Working Paper Series 322, Leibniz Institute for Financial Research SAFE.
  • Handle: RePEc:zbw:safewp:322
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/243176/1/1773277715.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Costola, Michele & Iacopini, Matteo & Santagiustina, Carlo R.M.A., 2021. "Google search volumes and the financial markets during the COVID-19 outbreak," Finance Research Letters, Elsevier, vol. 42(C).
    2. Renault, Thomas, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Journal of Banking & Finance, Elsevier, vol. 84(C), pages 25-40.
    3. Thomas Renault, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03205113, HAL.
    4. Behrendt, Simon & Schmidt, Alexander, 2018. "The Twitter myth revisited: Intraday investor sentiment, Twitter activity and individual-level stock return volatility," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 355-367.
    5. Shi, Yanlin & Ho, Kin-Yip & Liu, Wai-Man, 2016. "Public information arrival and stock return volatility: Evidence from news sentiment and Markov Regime-Switching Approach," International Review of Economics & Finance, Elsevier, vol. 42(C), pages 291-312.
    6. Matteo Iacopini & Carlo R.M.A. Santagiustina, 2021. "Filtering the intensity of public concern from social media count data with jumps," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1283-1302, October.
    7. Cuiyuan Wang & Tao Wang & Changhe Yuan & Jane Yihua Rong, 2022. "Learning to trade on sentiment," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 46(2), pages 308-323, April.
    8. Patrick Houlihan & Germán G. Creamer, 2017. "Can Sentiment Analysis and Options Volume Anticipate Future Returns?," Computational Economics, Springer;Society for Computational Economics, vol. 50(4), pages 669-685, December.
    9. Chen, Shunqin & Guo, Zhengfeng & Zhao, Xinlei, 2021. "Predicting mortgage early delinquency with machine learning methods," European Journal of Operational Research, Elsevier, vol. 290(1), pages 358-372.
    10. Lorraine Rupande & Hilary Tinotenda Muguto & Paul-Francois Muzindutsi, 2019. "Investor sentiment and stock return volatility: Evidence from the Johannesburg Stock Exchange," Cogent Economics & Finance, Taylor & Francis Journals, vol. 7(1), pages 1600233-160, January.
    11. Wataru Souma & Irena Vodenska & Hideaki Aoyama, 2019. "Enhanced news sentiment analysis using deep learning methods," Journal of Computational Social Science, Springer, vol. 2(1), pages 33-46, January.
    12. Tim Loughran & Bill McDonald, 2015. "The Use of Word Lists in Textual Analysis," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 16(1), pages 1-11, January.
    13. Massimiliano Caporin & Francesco Poli, 2017. "Building News Measures from Textual Data and an Application to Volatility Forecasting," Econometrics, MDPI, vol. 5(3), pages 1-46, August.
    14. Nicholas Mangee, 2018. "Stock Returns and the Tone of Marketplace Information: Does Context Matter?," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 19(4), pages 396-406, October.
    15. Diego García, 2013. "Sentiment during Recessions," Journal of Finance, American Finance Association, vol. 68(3), pages 1267-1300, June.
    16. Feng, Lingbing & Fu, Tong & Shi, Yanlin, 2022. "How does news sentiment affect the states of Japanese stock return volatility?," International Review of Financial Analysis, Elsevier, vol. 84(C).
    17. Groß-Klußmann, Axel & Hautsch, Nikolaus, 2011. "When machines read the news: Using automated text analytics to quantify high frequency news-implied market reactions," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 321-340, March.
    18. George J. Jiang & Yisong S. Tian, 2005. "The Model-Free Implied Volatility and Its Information Content," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1305-1342.
    19. Frugier, Alain, 2016. "Returns, volatility and investor sentiment: Evidence from European stock markets," Research in International Business and Finance, Elsevier, vol. 38(C), pages 45-55.
    20. Xingchen Wan & Jie Yang & Slavi Marinov & Jan-Peter Calliess & Stefan Zohren & Xiaowen Dong, 2020. "Sentiment Correlation in Financial News Networks and Associated Market Movements," Papers 2011.06430, arXiv.org, revised Feb 2021.
    21. Chung, San-Lin & Hung, Chi-Hsiou & Yeh, Chung-Ying, 2012. "When does investor sentiment predict stock returns?," Journal of Empirical Finance, Elsevier, vol. 19(2), pages 217-240.
    22. Tim Loughran & Bill Mcdonald, 2011. "When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10‐Ks," Journal of Finance, American Finance Association, vol. 66(1), pages 35-65, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sakthivel SANTHOSHKUMAR & Murugesan SELVAM, 2024. "Twitter sentiments and stock indices returns with reference to nifty energy indices of India," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(1(638), S), pages 125-136, Spring.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wenzhao & Su, Chen & Duxbury, Darren, 2022. "The conditional impact of investor sentiment in global stock markets: A two-channel examination," Journal of Banking & Finance, Elsevier, vol. 138(C).
    2. Zachary McGurk & Adam Nowak & Joshua C. Hall, 2020. "Stock returns and investor sentiment: textual analysis and social media," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 44(3), pages 458-485, July.
    3. Daniele Ballinari & Simon Behrendt, 2021. "How to gauge investor behavior? A comparison of online investor sentiment measures," Digital Finance, Springer, vol. 3(2), pages 169-204, June.
    4. Suwan (Cheng) Long & Brian Lucey & Ying Xie & Larisa Yarovaya, 2023. "“I just like the stock”: The role of Reddit sentiment in the GameStop share rally," The Financial Review, Eastern Finance Association, vol. 58(1), pages 19-37, February.
    5. Alomari, Mohammad & Al Rababa’a, Abdel Razzaq & El-Nader, Ghaith & Alkhataybeh, Ahmad & Ur Rehman, Mobeen, 2021. "Examining the effects of news and media sentiments on volatility and correlation: Evidence from the UK," The Quarterly Review of Economics and Finance, Elsevier, vol. 82(C), pages 280-297.
    6. Thomas Renault, 2020. "Sentiment analysis and machine learning in finance: a comparison of methods and models on one million messages," Digital Finance, Springer, vol. 2(1), pages 1-13, September.
    7. Rui Fan & Oleksandr Talavera & Vu Tran, 2023. "Social media and price discovery: The case of cross‐listed firms," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 46(1), pages 151-167, February.
    8. Wang, Gaoshan & Yu, Guangjin & Shen, Xiaohong, 2021. "The effect of online environmental news on green industry stocks: The mediating role of investor sentiment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    9. Seok, Sang Ik & Cho, Hoon & Ryu, Doojin, 2021. "Stock Market’s responses to intraday investor sentiment," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    10. Szymon Lis, 2022. "Investor Sentiment in Asset Pricing Models: A Review," Working Papers 2022-14, Faculty of Economic Sciences, University of Warsaw.
    11. Dias, Ishanka K. & Fernando, J.M. Ruwani & Fernando, P. Narada D., 2022. "Does investor sentiment predict bitcoin return and volatility? A quantile regression approach," International Review of Financial Analysis, Elsevier, vol. 84(C).
    12. Jianfei Zhang & Mathieu Rosenbaum, 2023. "Towards systematic intraday news screening: a liquidity-focused approach," Papers 2304.05115, arXiv.org.
    13. Andrew Todd & James Bowden & Yashar Moshfeghi, 2024. "Text‐based sentiment analysis in finance: Synthesising the existing literature and exploring future directions," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(1), March.
    14. Chu, Xiaojun & Wan, Xinmin & Qiu, Jianying, 2023. "The relative importance of overnight sentiment versus trading-hour sentiment in volatility forecasting," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    15. Mohammad Alomari & Abdel Razzaq Al rababa’a & Ghaith El-Nader & Ahmad Alkhataybeh, 2021. "Who’s behind the wheel? The role of social and media news in driving the stock–bond correlation," Review of Quantitative Finance and Accounting, Springer, vol. 57(3), pages 959-1007, October.
    16. Ballinari, Daniele & Behrendt, Simon, 2020. "Structural breaks in online investor sentiment: A note on the nonstationarity of financial chatter," Finance Research Letters, Elsevier, vol. 35(C).
    17. Xiaohong Shen & Gaoshan Wang & Yue Wang & Alfred Peris, 2021. "The Influence of Research Reports on Stock Returns: The Mediating Effect of Machine-Learning-Based Investor Sentiment," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-14, December.
    18. Ahmed, Yousry & Elshandidy, Tamer, 2016. "The effect of bidder conservatism on M&A decisions: Text-based evidence from US 10-K filings," International Review of Financial Analysis, Elsevier, vol. 46(C), pages 176-190.
    19. Ahmad, Khurshid & Han, JingGuang & Hutson, Elaine & Kearney, Colm & Liu, Sha, 2016. "Media-expressed negative tone and firm-level stock returns," Journal of Corporate Finance, Elsevier, vol. 37(C), pages 152-172.
    20. Bianconi, Marcelo & Hua, Xiaxin & Tan, Chih Ming, 2015. "Determinants of systemic risk and information dissemination," International Review of Economics & Finance, Elsevier, vol. 38(C), pages 352-368.

    More about this item

    Keywords

    Public financial news; Stock market; NLP; Dictionary; LSTM neural networks; Investor sentiment; S&P 500;
    All these keywords.

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:safewp:322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/csafede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.