Impact of public news sentiment on stock market index return and volatility
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Gianluca Anese & Marco Corazza & Michele Costola & Loriana Pelizzon, 2023. "Impact of public news sentiment on stock market index return and volatility," Computational Management Science, Springer, vol. 20(1), pages 1-36, December.
References listed on IDEAS
- Costola, Michele & Iacopini, Matteo & Santagiustina, Carlo R.M.A., 2021. "Google search volumes and the financial markets during the COVID-19 outbreak," Finance Research Letters, Elsevier, vol. 42(C).
- Renault, Thomas, 2017.
"Intraday online investor sentiment and return patterns in the U.S. stock market,"
Journal of Banking & Finance, Elsevier, vol. 84(C), pages 25-40.
- Thomas Renault, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Post-Print hal-03205113, HAL.
- Thomas Renault, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03205113, HAL.
- Behrendt, Simon & Schmidt, Alexander, 2018. "The Twitter myth revisited: Intraday investor sentiment, Twitter activity and individual-level stock return volatility," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 355-367.
- Shi, Yanlin & Ho, Kin-Yip & Liu, Wai-Man, 2016. "Public information arrival and stock return volatility: Evidence from news sentiment and Markov Regime-Switching Approach," International Review of Economics & Finance, Elsevier, vol. 42(C), pages 291-312.
- Matteo Iacopini & Carlo R.M.A. Santagiustina, 2021.
"Filtering the intensity of public concern from social media count data with jumps,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1283-1302, October.
- Matteo Iacopini & Carlo R. M. A. Santagiustina, 2020. "Filtering the intensity of public concern from social media count data with jumps," Papers 2012.13267, arXiv.org.
- Matteo Iacopini & Carlo Romano Marcello Alessandro Santagiustina, 2021. "Filtering the Intensity of Public Concern from Social Media Count Data with Jumps," SciencePo Working papers Main hal-04494229, HAL.
- Matteo Iacopini & Carlo Romano Marcello Alessandro Santagiustina, 2021. "Filtering the Intensity of Public Concern from Social Media Count Data with Jumps," Post-Print hal-04494229, HAL.
- Cuiyuan Wang & Tao Wang & Changhe Yuan & Jane Yihua Rong, 2022. "Learning to trade on sentiment," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 46(2), pages 308-323, April.
- Patrick Houlihan & Germán G. Creamer, 2017. "Can Sentiment Analysis and Options Volume Anticipate Future Returns?," Computational Economics, Springer;Society for Computational Economics, vol. 50(4), pages 669-685, December.
- Chen, Shunqin & Guo, Zhengfeng & Zhao, Xinlei, 2021. "Predicting mortgage early delinquency with machine learning methods," European Journal of Operational Research, Elsevier, vol. 290(1), pages 358-372.
- Lorraine Rupande & Hilary Tinotenda Muguto & Paul-Francois Muzindutsi, 2019. "Investor sentiment and stock return volatility: Evidence from the Johannesburg Stock Exchange," Cogent Economics & Finance, Taylor & Francis Journals, vol. 7(1), pages 1600233-160, January.
- Wataru Souma & Irena Vodenska & Hideaki Aoyama, 2019. "Enhanced news sentiment analysis using deep learning methods," Journal of Computational Social Science, Springer, vol. 2(1), pages 33-46, January.
- Tim Loughran & Bill McDonald, 2015. "The Use of Word Lists in Textual Analysis," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 16(1), pages 1-11, January.
- Massimiliano Caporin & Francesco Poli, 2017. "Building News Measures from Textual Data and an Application to Volatility Forecasting," Econometrics, MDPI, vol. 5(3), pages 1-46, August.
- Nicholas Mangee, 2018. "Stock Returns and the Tone of Marketplace Information: Does Context Matter?," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 19(4), pages 396-406, October.
- Diego García, 2013. "Sentiment during Recessions," Journal of Finance, American Finance Association, vol. 68(3), pages 1267-1300, June.
- Feng, Lingbing & Fu, Tong & Shi, Yanlin, 2022. "How does news sentiment affect the states of Japanese stock return volatility?," International Review of Financial Analysis, Elsevier, vol. 84(C).
- Groß-Klußmann, Axel & Hautsch, Nikolaus, 2011. "When machines read the news: Using automated text analytics to quantify high frequency news-implied market reactions," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 321-340, March.
- George J. Jiang & Yisong S. Tian, 2005. "The Model-Free Implied Volatility and Its Information Content," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1305-1342.
- Frugier, Alain, 2016. "Returns, volatility and investor sentiment: Evidence from European stock markets," Research in International Business and Finance, Elsevier, vol. 38(C), pages 45-55.
- Xingchen Wan & Jie Yang & Slavi Marinov & Jan-Peter Calliess & Stefan Zohren & Xiaowen Dong, 2020. "Sentiment Correlation in Financial News Networks and Associated Market Movements," Papers 2011.06430, arXiv.org, revised Feb 2021.
- Chung, San-Lin & Hung, Chi-Hsiou & Yeh, Chung-Ying, 2012. "When does investor sentiment predict stock returns?," Journal of Empirical Finance, Elsevier, vol. 19(2), pages 217-240.
- Tim Loughran & Bill Mcdonald, 2011. "When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10‐Ks," Journal of Finance, American Finance Association, vol. 66(1), pages 35-65, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sakthivel SANTHOSHKUMAR & Murugesan SELVAM, 2024. "Twitter sentiments and stock indices returns with reference to nifty energy indices of India," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(1(638), S), pages 125-136, Spring.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Daniele Ballinari & Simon Behrendt, 2021. "How to gauge investor behavior? A comparison of online investor sentiment measures," Digital Finance, Springer, vol. 3(2), pages 169-204, June.
- Suwan (Cheng) Long & Brian Lucey & Ying Xie & Larisa Yarovaya, 2023. "“I just like the stock”: The role of Reddit sentiment in the GameStop share rally," The Financial Review, Eastern Finance Association, vol. 58(1), pages 19-37, February.
- Alomari, Mohammad & Al Rababa’a, Abdel Razzaq & El-Nader, Ghaith & Alkhataybeh, Ahmad & Ur Rehman, Mobeen, 2021. "Examining the effects of news and media sentiments on volatility and correlation: Evidence from the UK," The Quarterly Review of Economics and Finance, Elsevier, vol. 82(C), pages 280-297.
- Wang, Wenzhao & Su, Chen & Duxbury, Darren, 2022. "The conditional impact of investor sentiment in global stock markets: A two-channel examination," Journal of Banking & Finance, Elsevier, vol. 138(C).
- Zachary McGurk & Adam Nowak & Joshua C. Hall, 2020.
"Stock returns and investor sentiment: textual analysis and social media,"
Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 44(3), pages 458-485, July.
- Zachary McGurk & Adam Nowak & Joshua C. Hall, 2019. "Stock Returns and Investor Sentiment: Textual Analysis and Social Media," Working Papers 19-03, Department of Economics, West Virginia University.
- Thomas Renault, 2020.
"Sentiment analysis and machine learning in finance: a comparison of methods and models on one million messages,"
Digital Finance, Springer, vol. 2(1), pages 1-13, September.
- Thomas Renault, 2020. "Sentiment analysis and machine learning in finance: a comparison of methods and models on one million messages," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03205149, HAL.
- Thomas Renault, 2020. "Sentiment analysis and machine learning in finance: a comparison of methods and models on one million messages," Post-Print hal-03205149, HAL.
- Rui Fan & Oleksandr Talavera & Vu Tran, 2023.
"Social media and price discovery: The case of cross‐listed firms,"
Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 46(1), pages 151-167, February.
- Rui Fan & Oleksandr Talavera & Vu Tran, 2020. "Social media and price discovery: the case of cross-listed firms," Discussion Papers 20-05, Department of Economics, University of Birmingham.
- Seok, Sang Ik & Cho, Hoon & Ryu, Doojin, 2021. "Stock Market’s responses to intraday investor sentiment," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
- Szymon Lis, 2022. "Investor Sentiment in Asset Pricing Models: A Review," Working Papers 2022-14, Faculty of Economic Sciences, University of Warsaw.
- Mohammad Alomari & Abdel Razzaq Al rababa’a & Ghaith El-Nader & Ahmad Alkhataybeh, 2021. "Who’s behind the wheel? The role of social and media news in driving the stock–bond correlation," Review of Quantitative Finance and Accounting, Springer, vol. 57(3), pages 959-1007, October.
- Wang, Gaoshan & Yu, Guangjin & Shen, Xiaohong, 2021. "The effect of online environmental news on green industry stocks: The mediating role of investor sentiment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
- Dias, Ishanka K. & Fernando, J.M. Ruwani & Fernando, P. Narada D., 2022. "Does investor sentiment predict bitcoin return and volatility? A quantile regression approach," International Review of Financial Analysis, Elsevier, vol. 84(C).
- Jianfei Zhang & Mathieu Rosenbaum, 2023. "Towards systematic intraday news screening: a liquidity-focused approach," Papers 2304.05115, arXiv.org.
- Andrew Todd & James Bowden & Yashar Moshfeghi, 2024. "Text‐based sentiment analysis in finance: Synthesising the existing literature and exploring future directions," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(1), March.
- Chu, Xiaojun & Wan, Xinmin & Qiu, Jianying, 2023. "The relative importance of overnight sentiment versus trading-hour sentiment in volatility forecasting," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
- Ballinari, Daniele & Behrendt, Simon, 2020. "Structural breaks in online investor sentiment: A note on the nonstationarity of financial chatter," Finance Research Letters, Elsevier, vol. 35(C).
- Xiaohong Shen & Gaoshan Wang & Yue Wang & Alfred Peris, 2021. "The Influence of Research Reports on Stock Returns: The Mediating Effect of Machine-Learning-Based Investor Sentiment," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-14, December.
- Seok, Sangik & Cho, Hoon & Ryu, Doojin, 2022. "Scheduled macroeconomic news announcements and intraday market sentiment," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
- Smita Roy Trivedi, 2024. "Into the Unknown: Uncertainty, Foreboding and Financial Markets," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 31(1), pages 1-23, March.
- Juan Imbet & J. Anthony Cookson & Corbin Fox & Christoph Schiller & Javier Gil-Bazo, 2024. "Social Media as a Bank Run Catalyst," Post-Print hal-04660083, HAL.
More about this item
Keywords
Public financial news; Stock market; NLP; Dictionary; LSTM neural networks; Investor sentiment; S&P 500;All these keywords.
JEL classification:
- G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
- C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
- C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2021-10-25 (Big Data)
- NEP-CMP-2021-10-25 (Computational Economics)
- NEP-FMK-2021-10-25 (Financial Markets)
- NEP-RMG-2021-10-25 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:safewp:322. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/csafede.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.