IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/80108.html
   My bibliography  Save this paper

An entropy based analysis of the relationship between the DOW JONES Index and the TRNA Sentiment series

Author

Listed:
  • Allen, D.E.
  • McAleer, M.J.
  • Singh, A.K.

Abstract

This paper features an analysis of the relationship between the DOW JONES Industrial Average Index (DJIA) and a sentiment news series using daily data obtained from the Thomson Reuters News Analytics (TRNA)1 provided by SIRCA (The Securities Industry Research Centre of the Asia Pacic). The recent growth in the availability of on-line financial news sources such as internet news and social media sources provides instantaneous access to financial news. Various commercial agencies have started developing their own filtered financial news feeds which are used by investors and traders to support their algorithmic trading strategies. Thomson Reuters News Analytics (TRNA)2 is one such data set. In this study we use the TRNA data set to construct a series of daily sentiment scores for Dow Jones Industrial Average (DJIA) stock index component companies. We use these daily DJIA market sentiment scores to study the relationship between financial news sentiment scores and the stock prices of these companies using entropy measures. The entropy and Mutual Information (MI) statistics permit an analysis of the amount of information within the sentiment series, its relationship to the DJIA and an indication of how the relationship changes over time.

Suggested Citation

  • Allen, D.E. & McAleer, M.J. & Singh, A.K., 2016. "An entropy based analysis of the relationship between the DOW JONES Index and the TRNA Sentiment series," Econometric Institute Research Papers EI2016-21, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:80108
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/80108/EI2016-21.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. David E. Allen & Michael McAleer & Abhay K. Singh, 2019. "Daily market news sentiment and stock prices," Applied Economics, Taylor & Francis Journals, vol. 51(30), pages 3212-3235, June.
    2. Paul C. Tetlock, 2010. "Does Public Financial News Resolve Asymmetric Information?," The Review of Financial Studies, Society for Financial Studies, vol. 23(9), pages 3520-3557.
    3. Sims, Christopher A., 2005. "Rational inattention: a research agenda," Discussion Paper Series 1: Economic Studies 2005,34, Deutsche Bundesbank.
    4. Andreas Storkenmaier & Martin Wagener & Christof Weinhardt, 2012. "Public information in fragmented markets," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 26(2), pages 179-215, June.
    5. Brad M. Barber & Terrance Odean, 2008. "All That Glitters: The Effect of Attention and News on the Buying Behavior of Individual and Institutional Investors," The Review of Financial Studies, Society for Financial Studies, vol. 21(2), pages 785-818, April.
    6. Groß-Klußmann, Axel & Hautsch, Nikolaus, 2011. "When machines read the news: Using automated text analytics to quantify high frequency news-implied market reactions," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 321-340, March.
    7. David E. Allen & Michael McAleer & Abhay K. Singh, 2014. "Machine news and volatility: The Dow Jones Industrial Average and the TRNA sentiment series," Working Papers in Economics 14/04, University of Canterbury, Department of Economics and Finance.
    8. Leela Mitra & Gautam Mitra & Dan Dibartolomeo, 2009. "Equity portfolio risk estimation using market information and sentiment," Quantitative Finance, Taylor & Francis Journals, vol. 9(8), pages 887-895.
    9. Paul C. Tetlock & Maytal Saar‐Tsechansky & Sofus Macskassy, 2008. "More Than Words: Quantifying Language to Measure Firms' Fundamentals," Journal of Finance, American Finance Association, vol. 63(3), pages 1437-1467, June.
    10. C. W. Granger & E. Maasoumi & J. Racine, 2004. "A Dependence Metric for Possibly Nonlinear Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(5), pages 649-669, September.
    11. Anil Bera & Sung Park, 2008. "Optimal Portfolio Diversification Using the Maximum Entropy Principle," Econometric Reviews, Taylor & Francis Journals, vol. 27(4-6), pages 484-512.
    12. Racine, Jeffrey S., 2008. "Nonparametric Econometrics: A Primer," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(1), pages 1-88, March.
    13. Steve Pincus, 2008. "Approximate Entropy as an Irregularity Measure for Financial Data," Econometric Reviews, Taylor & Francis Journals, vol. 27(4-6), pages 329-362.
    14. Amos Golan & Esfandiar Maasoumi, 2008. "Information Theoretic and Entropy Methods: An Overview," Econometric Reviews, Taylor & Francis Journals, vol. 27(4-6), pages 317-328.
    15. Smales, Lee A., 2014. "News sentiment in the gold futures market," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 275-286.
    16. Hayfield, Tristen & Racine, Jeffrey S., 2008. "Nonparametric Econometrics: The np Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i05).
    17. Golan, Amos, 2002. "Information and Entropy Econometrics--Editor's View," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 1-15, March.
    18. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chinmoy Ghosh & Cristian Pinto‐Gutiérrez & Jaideep Shenoy, 2024. "Does negative news disclosure induce better decision‐making? Evidence from acquisitions," The Financial Review, Eastern Finance Association, vol. 59(2), pages 325-372, May.
    2. David E. Allen & Michael McAleer & David McHardy Reid, 2018. "Fake News And Indifference To Truth: Dissecting Tweets And State Of The Union Addresses By Presidents Obama And Trump," Advances in Decision Sciences, Asia University, Taiwan, vol. 22(1), pages 180-203, December.
    3. Zhang, Heng-Guo & CAO, Tingting & Li, Houxuan & Xu, Tiantian, 2021. "Dynamic measurement of news-driven information friction in China's carbon market: Theory and evidence," Energy Economics, Elsevier, vol. 95(C).
    4. David E. Allen & Michael McAleer & Abhay K. Singh, 2014. "Machine news and volatility: The Dow Jones Industrial Average and the TRNA sentiment series," Working Papers in Economics 14/04, University of Canterbury, Department of Economics and Finance.
    5. Yang, Shanxiang & Liu, Zhechen & Wang, Xinjie, 2020. "News sentiment, credit spreads, and information asymmetry," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    6. Allen, D.E. & McAleer, M.J. & McHardy Reid, D., 2018. "Fake News and Indifference to Truth," Econometric Institute Research Papers EI2018-10, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. David E. Allen & Michael McAleer, 2019. "Fake News and Propaganda: Trump’s Democratic America and Hitler’s National Socialist (Nazi) Germany," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
    8. Massimiliano Caporin & Francesco Poli, 2017. "Building News Measures from Textual Data and an Application to Volatility Forecasting," Econometrics, MDPI, vol. 5(3), pages 1-46, August.
    9. David E. Allen & Michael McAleer, 2022. "Trump’s COVID-19 tweets and Dr. Fauci’s emails," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(3), pages 1643-1655, March.
    10. Tom Marty & Bruce Vanstone & Tobias Hahn, 2020. "News media analytics in finance: a survey," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(2), pages 1385-1434, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David E. Allen & Michael McAleer & Abhay K. Singh, 2014. "Machine news and volatility: The Dow Jones Industrial Average and the TRNA sentiment series," Working Papers in Economics 14/04, University of Canterbury, Department of Economics and Finance.
    2. David E. Allen & Michael McAleer & Robert Powell & Abhay K. Singh, 2013. "A Non-Parametric and Entropy Based Analysis of the Relationship between the VIX and S&P 500," JRFM, MDPI, vol. 6(1), pages 1-25, October.
    3. David E. Allen & Michael McAleer & Abhay K. Singh, 2019. "Daily market news sentiment and stock prices," Applied Economics, Taylor & Francis Journals, vol. 51(30), pages 3212-3235, June.
    4. David E. Allen & Michael McAleer, 2019. "Fake News and Propaganda: Trump’s Democratic America and Hitler’s National Socialist (Nazi) Germany," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
    5. Ferdinand Graf, 2011. "Mechanically Extracted Company Signals and their Impact on Stock and Credit Markets," Working Paper Series of the Department of Economics, University of Konstanz 2011-18, Department of Economics, University of Konstanz.
    6. Allen, D.E. & McAleer, M.J. & McHardy Reid, D., 2018. "Fake News and Indifference to Truth," Econometric Institute Research Papers EI2018-10, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Wei, Yu-Chen & Lu, Yang-Cheng & Chen, Jen-Nan & Hsu, Yen-Ju, 2017. "Informativeness of the market news sentiment in the Taiwan stock market," The North American Journal of Economics and Finance, Elsevier, vol. 39(C), pages 158-181.
    8. Tom Marty & Bruce Vanstone & Tobias Hahn, 2020. "News media analytics in finance: a survey," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(2), pages 1385-1434, June.
    9. Rui Fan & Oleksandr Talavera & Vu Tran, 2020. "Social media bots and stock markets," European Financial Management, European Financial Management Association, vol. 26(3), pages 753-777, June.
    10. Stefan Feuerriegel & Helmut Prendinger, 2018. "News-based trading strategies," Papers 1807.06824, arXiv.org.
    11. David E. Allen & Michael McAleer & David McHardy Reid, 2018. "Fake News And Indifference To Truth: Dissecting Tweets And State Of The Union Addresses By Presidents Obama And Trump," Advances in Decision Sciences, Asia University, Taiwan, vol. 22(1), pages 180-203, December.
    12. Smales, Lee A., 2016. "News sentiment and bank credit risk," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 37-61.
    13. Gupta, Kartick & Banerjee, Rajabrata, 2019. "Does OPEC news sentiment influence stock returns of energy firms in the United States?," Energy Economics, Elsevier, vol. 77(C), pages 34-45.
    14. Yen-Ju Hsu & Yang-Cheng Lu & J. Jimmy Yang, 2021. "News sentiment and stock market volatility," Review of Quantitative Finance and Accounting, Springer, vol. 57(3), pages 1093-1122, October.
    15. Khuu, Joyce & Durand, Robert B. & Smales, Lee A., 2016. "Melancholia and Japanese stock returns – 2003 to 2012," Pacific-Basin Finance Journal, Elsevier, vol. 40(PB), pages 424-437.
    16. Groß-Klußmann, Axel & Hautsch, Nikolaus, 2011. "When machines read the news: Using automated text analytics to quantify high frequency news-implied market reactions," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 321-340, March.
    17. Timm O. Sprenger & Philipp G. Sandner & Andranik Tumasjan & Isabell M. Welpe, 2014. "News or Noise? Using Twitter to Identify and Understand Company-specific News Flow," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 41(7-8), pages 791-830, September.
    18. Du, Hanyu & Hao, Jing & He, Feng & Xi, Wenze, 2022. "Media sentiment and cross-sectional stock returns in the Chinese stock market," Research in International Business and Finance, Elsevier, vol. 60(C).
    19. Fabrizio Lillo & Salvatore Miccich� & Michele Tumminello & Jyrki Piilo & Rosario N. Mantegna, 2015. "How news affects the trading behaviour of different categories of investors in a financial market," Quantitative Finance, Taylor & Francis Journals, vol. 15(2), pages 213-229, February.
    20. Ho, Kin-Yip & Shi, Yanlin & Zhang, Zhaoyong, 2013. "How does news sentiment impact asset volatility? Evidence from long memory and regime-switching approaches," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 436-456.

    More about this item

    Keywords

    DJIA; Sentiment; Entropy; TRNA; Information;
    All these keywords.

    JEL classification:

    • C29 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Other
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:80108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.