IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2304.05115.html
   My bibliography  Save this paper

Towards systematic intraday news screening: a liquidity-focused approach

Author

Listed:
  • Jianfei Zhang
  • Mathieu Rosenbaum

Abstract

News can convey bearish or bullish views on financial assets. Institutional investors need to evaluate automatically the implied news sentiment based on textual data. Given the huge amount of news articles published each day, most of which are neutral, we present a systematic news screening method to identify the ``true'' impactful ones, aiming for more effective development of news sentiment learning methods. Based on several liquidity-driven variables, including volatility, turnover, bid-ask spread, and book size, we associate each 5-min time bin to one of two specific liquidity modes. One represents the ``calm'' state at which the market stays for most of the time and the other, featured with relatively higher levels of volatility and trading volume, describes the regime driven by some exogenous events. Then we focus on the moments where the liquidity mode switches from the former to the latter and consider the news articles published nearby impactful. We apply naive Bayes on these filtered samples for news sentiment classification as an illustrative example. We show that the screened dataset leads to more effective feature capturing and thus superior performance on short-term asset return prediction compared to the original dataset.

Suggested Citation

  • Jianfei Zhang & Mathieu Rosenbaum, 2023. "Towards systematic intraday news screening: a liquidity-focused approach," Papers 2304.05115, arXiv.org.
  • Handle: RePEc:arx:papers:2304.05115
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2304.05115
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Renault, Thomas, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Journal of Banking & Finance, Elsevier, vol. 84(C), pages 25-40.
    2. Thomas Renault, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03205113, HAL.
    3. Armand Joulin & Augustin Lefevre & Daniel Grunberg & Jean-Philippe Bouchaud, 2008. "Stock price jumps: news and volume play a minor role," Papers 0803.1769, arXiv.org.
    4. Riccardo Marcaccioli & Jean-Philippe Bouchaud & Michael Benzaquen, 2022. "Exogenous and Endogenous Price Jumps Belong to Different Dynamical Classes," Post-Print hal-03378876, HAL.
    5. Marcello Rambaldi & Emmanuel Bacry & Jean-François Muzy, 2019. "Disentangling and quantifying market participant volatility contributions," Quantitative Finance, Taylor & Francis Journals, vol. 19(10), pages 1613-1625, October.
    6. Christian Y. Robert & Mathieu Rosenbaum, 2011. "A New Approach for the Dynamics of Ultra-High-Frequency Data: The Model with Uncertainty Zones," Journal of Financial Econometrics, Oxford University Press, vol. 9(2), pages 344-366, Spring.
    7. Jiang, Hao & Li, Sophia Zhengzi & Wang, Hao, 2021. "Pervasive underreaction: Evidence from high-frequency data," Journal of Financial Economics, Elsevier, vol. 141(2), pages 573-599.
    8. Groß-Klußmann, Axel & Hautsch, Nikolaus, 2011. "When machines read the news: Using automated text analytics to quantify high frequency news-implied market reactions," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 321-340, March.
    9. Weibing Huang & Charles-Albert Lehalle & Mathieu Rosenbaum, 2015. "Simulating and Analyzing Order Book Data: The Queue-Reactive Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 107-122, March.
    10. Qinkai Chen, 2021. "Stock Movement Prediction with Financial News using Contextualized Embedding from BERT," Papers 2107.08721, arXiv.org.
    11. Zheng Tracy Ke & Bryan T. Kelly & Dacheng Xiu, 2019. "Predicting Returns With Text Data," NBER Working Papers 26186, National Bureau of Economic Research, Inc.
    12. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    13. Tim Loughran & Bill Mcdonald, 2011. "When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10‐Ks," Journal of Finance, American Finance Association, vol. 66(1), pages 35-65, February.
    14. Matthieu Wyart & Jean-Philippe Bouchaud & Julien Kockelkoren & Marc Potters & Michele Vettorazzo, 2008. "Relation between bid-ask spread, impact and volatility in order-driven markets," Quantitative Finance, Taylor & Francis Journals, vol. 8(1), pages 41-57.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew Todd & James Bowden & Yashar Moshfeghi, 2024. "Text‐based sentiment analysis in finance: Synthesising the existing literature and exploring future directions," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(1), March.
    2. Thomas Renault, 2020. "Sentiment analysis and machine learning in finance: a comparison of methods and models on one million messages," Digital Finance, Springer, vol. 2(1), pages 1-13, September.
    3. Gianluca Anese & Marco Corazza & Michele Costola & Loriana Pelizzon, 2023. "Impact of public news sentiment on stock market index return and volatility," Computational Management Science, Springer, vol. 20(1), pages 1-36, December.
    4. Gaoshan Wang & Guangjin Yu & Xiaohong Shen, 2020. "The Effect of Online Investor Sentiment on Stock Movements: An LSTM Approach," Complexity, Hindawi, vol. 2020, pages 1-11, December.
    5. Smita Roy Trivedi, 2024. "Into the Unknown: Uncertainty, Foreboding and Financial Markets," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 31(1), pages 1-23, March.
    6. Santi, Caterina, 2023. "Investor climate sentiment and financial markets," International Review of Financial Analysis, Elsevier, vol. 86(C).
    7. Zongwu Cai & Pixiong Chen, 2022. "New Online Investor Sentiment and Asset Returns," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202216, University of Kansas, Department of Economics, revised Nov 2022.
    8. Teplova, T. & Sokolova, T. & Tomtosov, A. & Buchko, D. & Nikulin, D., 2022. "The sentiment of private investors in explaining the differences in the trade characteristics of the Russian market stocks," Journal of the New Economic Association, New Economic Association, vol. 53(1), pages 53-84.
    9. Liu, Wenwen & Zhang, Chang & Qiao, Gaoxiu & Xu, Lei, 2022. "Impact of network investor sentiment and news arrival on jumps," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    10. Jeon, Yoontae & McCurdy, Thomas H. & Zhao, Xiaofei, 2022. "News as sources of jumps in stock returns: Evidence from 21 million news articles for 9000 companies," Journal of Financial Economics, Elsevier, vol. 145(2), pages 1-17.
    11. Shen, Shulin & Xia, Le & Shuai, Yulin & Gao, Da, 2022. "Measuring news media sentiment using big data for Chinese stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 74(C).
    12. Bouteska, Ahmed & Mefteh-Wali, Salma & Dang, Trung, 2022. "Predictive power of investor sentiment for Bitcoin returns: Evidence from COVID-19 pandemic," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    13. Chu, Xiaojun & Wan, Xinmin & Qiu, Jianying, 2023. "The relative importance of overnight sentiment versus trading-hour sentiment in volatility forecasting," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    14. Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    15. Mohammad Alomari & Abdel Razzaq Al rababa’a & Ghaith El-Nader & Ahmad Alkhataybeh, 2021. "Who’s behind the wheel? The role of social and media news in driving the stock–bond correlation," Review of Quantitative Finance and Accounting, Springer, vol. 57(3), pages 959-1007, October.
    16. Daniele Ballinari & Simon Behrendt, 2021. "How to gauge investor behavior? A comparison of online investor sentiment measures," Digital Finance, Springer, vol. 3(2), pages 169-204, June.
    17. Xiaohong Shen & Gaoshan Wang & Yue Wang & Alfred Peris, 2021. "The Influence of Research Reports on Stock Returns: The Mediating Effect of Machine-Learning-Based Investor Sentiment," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-14, December.
    18. Ferdinand Graf, 2011. "Mechanically Extracted Company Signals and their Impact on Stock and Credit Markets," Working Paper Series of the Department of Economics, University of Konstanz 2011-18, Department of Economics, University of Konstanz.
    19. Béatrice BOULU-RESHEF & Catherine BRUNEAU & Maxime NICOLAS & Thomas RENAULT, 2022. "An Experimental Analysis of Investor Sentiment," LEO Working Papers / DR LEO 2940, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    20. Ahmad, Khurshid & Han, JingGuang & Hutson, Elaine & Kearney, Colm & Liu, Sha, 2016. "Media-expressed negative tone and firm-level stock returns," Journal of Corporate Finance, Elsevier, vol. 37(C), pages 152-172.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2304.05115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.