IDEAS home Printed from https://ideas.repec.org/r/eee/csdana/v50y2006i10p2668-2684.html
   My bibliography  Save this item

A periodogram-based metric for time series classification

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Sipan Aslan & Ceylan Yozgatligil & Cem Iyigun, 2018. "Temporal clustering of time series via threshold autoregressive models: application to commodity prices," Annals of Operations Research, Springer, vol. 260(1), pages 51-77, January.
  2. Ozan Cinar & Ozlem Ilk & Cem Iyigun, 2018. "Clustering of short time-course gene expression data with dissimilar replicates," Annals of Operations Research, Springer, vol. 263(1), pages 405-428, April.
  3. Francesca Di Iorio & Umberto Triacca, 2022. "A comparison between VAR processes jointly modeling GDP and Unemployment rate in France and Germany," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 617-635, September.
  4. Zhaoxing Gao & Ruey S. Tsay, 2021. "Divide-and-Conquer: A Distributed Hierarchical Factor Approach to Modeling Large-Scale Time Series Data," Papers 2103.14626, arXiv.org.
  5. Beibei Zhang & Rong Chen, 2018. "Nonlinear Time Series Clustering Based on Kolmogorov-Smirnov 2D Statistic," Journal of Classification, Springer;The Classification Society, vol. 35(3), pages 394-421, October.
  6. Raffaele Mattera & Philipp Otto, 2023. "Network log-ARCH models for forecasting stock market volatility," Papers 2303.11064, arXiv.org.
  7. João A. Bastos & Jorge Caiado, 2014. "Clustering financial time series with variance ratio statistics," Quantitative Finance, Taylor & Francis Journals, vol. 14(12), pages 2121-2133, December.
  8. Xu Gao & Babak Shahbaba & Hernando Ombao, 2018. "Modeling Binary Time Series Using Gaussian Processes with Application to Predicting Sleep States," Journal of Classification, Springer;The Classification Society, vol. 35(3), pages 549-579, October.
  9. Giulio Palomba & Emma Sarno & Alberto Zazzaro, 2009. "Testing similarities of short-run inflation dynamics among EU-25 countries after the Euro," Empirical Economics, Springer, vol. 37(2), pages 231-270, October.
  10. Salles, Andre Assis de & Maria Eduarda, Silva & Paulo, Teles, 2022. "Empirical Evidence of Associations and Similarities between the National Equity Markets Indexes and Crude Oil Prices in the International Market," MPRA Paper 113589, University Library of Munich, Germany.
  11. Carolina Euán & Hernando Ombao & Joaquín Ortega, 2018. "The Hierarchical Spectral Merger Algorithm: A New Time Series Clustering Procedure," Journal of Classification, Springer;The Classification Society, vol. 35(1), pages 71-99, April.
  12. Jin, Lei, 2011. "A data-driven test to compare two or multiple time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2183-2196, June.
  13. Elizabeth Ann Maharaj & Pierpaolo D’Urso & Don Galagedera, 2010. "Wavelet-based Fuzzy Clustering of Time Series," Journal of Classification, Springer;The Classification Society, vol. 27(2), pages 231-275, September.
  14. Caiado, Jorge & Crato, Nuno, 2008. "Identifying the evolution of stock markets stochastic structure after the euro," MPRA Paper 6609, University Library of Munich, Germany.
  15. B. Lafuente-Rego & P. D’Urso & J. A. Vilar, 2020. "Robust fuzzy clustering based on quantile autocovariances," Statistical Papers, Springer, vol. 61(6), pages 2393-2448, December.
  16. Caiado, Jorge & Crato, Nuno & Peña, Daniel, 2007. "Comparison of time series with unequal length," MPRA Paper 6605, University Library of Munich, Germany.
  17. Umberto Triacca, 2016. "Measuring the Distance between Sets of ARMA Models," Econometrics, MDPI, vol. 4(3), pages 1-11, July.
  18. Bertsch, Valentin & Devine, Mel & Sweeney, Conor & Parnell, Andrew C., 2018. "Analysing long-term interactions between demand response and different electricity markets using a stochastic market equilibrium model," Papers WP585, Economic and Social Research Institute (ESRI).
  19. Tyler Roick & Dimitris Karlis & Paul D. McNicholas, 2021. "Clustering discrete-valued time series," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(1), pages 209-229, March.
  20. Harvill, Jane L. & Ravishanker, Nalini & Ray, Bonnie K., 2013. "Bispectral-based methods for clustering time series," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 113-131.
  21. Maharaj, Elizabeth Ann & D’Urso, Pierpaolo, 2010. "A coherence-based approach for the pattern recognition of time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3516-3537.
  22. De Gregorio, Alessandro & Maria Iacus, Stefano, 2010. "Clustering of discretely observed diffusion processes," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 598-606, February.
  23. Caiado, Jorge & Crato, Nuno & Peña, Daniel, 2009. "Comparison of time series with unequal length in the frequency domain," MPRA Paper 15310, University Library of Munich, Germany.
  24. Jentsch, Carsten & Pauly, Markus, 2012. "A note on using periodogram-based distances for comparing spectral densities," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 158-164.
  25. Sonia Díaz & José Vilar, 2010. "Comparing Several Parametric and Nonparametric Approaches to Time Series Clustering: A Simulation Study," Journal of Classification, Springer;The Classification Society, vol. 27(3), pages 333-362, November.
  26. Roy Cerqueti & Pierpaolo D’Urso & Livia Giovanni & Raffaele Mattera & Vincenzina Vitale, 2024. "Fuzzy clustering of time series based on weighted conditional higher moments," Computational Statistics, Springer, vol. 39(6), pages 3091-3114, September.
  27. Maharaj, Elizabeth A. & Alonso, Andres M., 2007. "Discrimination of locally stationary time series using wavelets," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 879-895, October.
  28. Caiado, Jorge & Crato, Nuno, 2005. "Discrimination between deterministic trend and stochastic trend processes," MPRA Paper 2076, University Library of Munich, Germany.
  29. Caiado, Jorge & Crato, Nuno, 2007. "Identifying common spectral and asymmetric features in stock returns," MPRA Paper 6607, University Library of Munich, Germany.
  30. Vilar, J.A. & Alonso, A.M. & Vilar, J.M., 2010. "Non-linear time series clustering based on non-parametric forecast densities," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2850-2865, November.
  31. Pierpaolo D’Urso & Livia Giovanni & Riccardo Massari & Dario Lallo, 2013. "Noise fuzzy clustering of time series by autoregressive metric," METRON, Springer;Sapienza Università di Roma, vol. 71(3), pages 217-243, November.
  32. Carmela Iorio & Gianluca Frasso & Antonio D’Ambrosio & Roberta Siciliano, 2023. "Boosted-oriented probabilistic smoothing-spline clustering of series," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(4), pages 1123-1140, October.
  33. Mahmoudi, Mohammad Reza & Heydari, Mohammad Hossein & Roohi, Reza, 2019. "A new method to compare the spectral densities of two independent periodically correlated time series," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 160(C), pages 103-110.
  34. Liu, Shen & Maharaj, Elizabeth Ann, 2013. "A hypothesis test using bias-adjusted AR estimators for classifying time series in small samples," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 32-49.
  35. Otranto, Edoardo, 2008. "Clustering heteroskedastic time series by model-based procedures," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4685-4698, June.
  36. Jorge Caiado & Nuno Crato, 2010. "Identifying common dynamic features in stock returns," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 797-807.
  37. Caiado, Jorge & Crato, Nuno & Peña, Daniel, 2006. "An interpolated periodogram-based metric for comparison of time series with unequal lengths," MPRA Paper 2075, University Library of Munich, Germany.
  38. Giovanni De Luca & Paola Zuccolotto, 2011. "A tail dependence-based dissimilarity measure for financial time series clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(4), pages 323-340, December.
  39. Irene Mariñas-Collado & Ana E. Sipols & M. Teresa Santos-Martín & Elisa Frutos-Bernal, 2022. "Clustering and Forecasting Urban Bus Passenger Demand with a Combination of Time Series Models," Mathematics, MDPI, vol. 10(15), pages 1-16, July.
  40. Robert Lund & Hany Bassily & Brani Vidakovic, 2009. "Testing equality of stationary autocovariances," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(3), pages 332-348, May.
  41. E. Otranto, 2011. "Classification of Volatility in Presence of Changes in Model Parameters," Working Paper CRENoS 201113, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
  42. Giulio PALOMBA & Emma SARNO & Alberto ZAZZARO, 2007. "Testing similarities of short-run inflation dynamics among EU countries after the Euro," Working Papers 289, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
  43. Jorge Caiado & Nuno Crato & Pilar Poncela, 2020. "A fragmented-periodogram approach for clustering big data time series," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(1), pages 117-146, March.
  44. João A. Bastos & Jorge Caiado, 2021. "On the classification of financial data with domain agnostic features," Working Papers REM 2021/0185, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
  45. Juan Vilar & José Vilar & Sonia Pértega, 2009. "Classifying Time Series Data: A Nonparametric Approach," Journal of Classification, Springer;The Classification Society, vol. 26(1), pages 3-28, April.
  46. Patrick Toman & Nalini Ravishanker & Sanguthevar Rajasekaran & Nathan Lally, 2023. "Online Evidential Nearest Neighbour Classification for Internet of Things Time Series," International Statistical Review, International Statistical Institute, vol. 91(3), pages 395-426, December.
  47. Margherita Gerolimetto & Stefano Magrini, 2022. "Weighting in clustering time series: an application to Covid-19 data," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 76(4), pages 4-12, October-D.
  48. Montero, Pablo & Vilar, José A., 2014. "TSclust: An R Package for Time Series Clustering," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 62(i01).
  49. Mahdi Massahi & Masoud Mahootchi & Alireza Arshadi Khamseh, 2020. "Development of an efficient cluster-based portfolio optimization model under realistic market conditions," Empirical Economics, Springer, vol. 59(5), pages 2423-2442, November.
  50. Tianbo Chen & Ying Sun & Carolina Euan & Hernando Ombao, 2021. "Clustering Brain Signals: a Robust Approach Using Functional Data Ranking," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 425-442, October.
  51. Krzysztof Gajowniczek & Tomasz Ząbkowski, 2018. "Simulation Study on Clustering Approaches for Short-Term Electricity Forecasting," Complexity, Hindawi, vol. 2018, pages 1-21, April.
  52. Mahmoudi, Mohammad Reza, 2021. "A computational technique to classify several fractional Brownian motion processes," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
  53. Douzal-Chouakria, Ahlame & Diallo, Alpha & Giroud, Françoise, 2009. "Adaptive clustering for time series: Application for identifying cell cycle expressed genes," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1414-1426, February.
  54. Corduas, Marcella & Piccolo, Domenico, 2008. "Time series clustering and classification by the autoregressive metric," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1860-1872, January.
  55. Caiado, Jorge & Crato, Nuno & Peña, Daniel, 2007. "Is there an identity within international stock market volatilities?," MPRA Paper 2069, University Library of Munich, Germany.
  56. Zhen Wang & Jicai Ning & Meng Gao, 2024. "Complex Network Model of Global Financial Time Series Based on Different Distance Functions," Mathematics, MDPI, vol. 12(14), pages 1-14, July.
  57. Dette, Holger & Paparoditis, Efstathios, 2008. "Bootstrapping frequency domain tests in multivariate time series with an application to comparing spectral densities," Technical Reports 2008,28, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  58. Heung-gu Son & Yunsun Kim & Sahm Kim, 2020. "Time Series Clustering of Electricity Demand for Industrial Areas on Smart Grid," Energies, MDPI, vol. 13(9), pages 1-14, May.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.