IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v64y2013icp113-131.html
   My bibliography  Save this article

Bispectral-based methods for clustering time series

Author

Listed:
  • Harvill, Jane L.
  • Ravishanker, Nalini
  • Ray, Bonnie K.

Abstract

Distinguishing among linear and nonlinear time series or between nonlinear time series generated by different underlying processes is challenging, as second-order properties are generally insufficient for the task. Different nonlinear processes have different nonconstant bispectral signatures, whereas the bispectral density function of a Gaussian or linear time series is constant. Based on this, we propose a procedure to distinguish among various nonlinear time series and between nonlinear and linear time series through application of a hierarchical clustering algorithm based on distance measures computed from the square modulus of the estimated normalized bispectra. We find that clustering using a distance measure computed by averaging the ratio of normalized bispectral periodogram ordinates over the intersection of the principle domain of each pair of time series provides good performance, subject to trimming of extreme bispectral values prior to taking the ratios. Additionally, we show through simulation studies that the distance procedure performs better than a significance test that we derive. Moreover, it is robust with respect to the choice of smoothing parameter in estimating the bispectrum. As an example, we apply the method to a set of time series of intensities of gamma-ray bursts, some of which exhibit nonlinear behavior; this enables us to identify gamma-ray bursts that may be emanating from the same type of astral event.

Suggested Citation

  • Harvill, Jane L. & Ravishanker, Nalini & Ray, Bonnie K., 2013. "Bispectral-based methods for clustering time series," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 113-131.
  • Handle: RePEc:eee:csdana:v:64:y:2013:i:c:p:113-131
    DOI: 10.1016/j.csda.2013.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313000893
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Caiado, Jorge & Crato, Nuno & Pena, Daniel, 2006. "A periodogram-based metric for time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2668-2684, June.
    2. Melvin J. Hinich, 1982. "Testing For Gaussianity And Linearity Of A Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 3(3), pages 169-176, May.
    3. Richard A. Ashley & Douglas M. Patterson & Melvin J. Hinich, 1986. "A Diagnostic Test For Nonlinear Serial Dependence In Time Series Fitting Errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 7(3), pages 165-178, May.
    4. Elena Rusticelli & Richard Ashley & Estela Bee Dagum & Douglas Patterson, 2009. "A New Bispectral Test for NonLinear Serial Dependence," Econometric Reviews, Taylor & Francis Journals, vol. 28(1-3), pages 279-293.
    5. Fruhwirth-Schnatter, Sylvia & Kaufmann, Sylvia, 2008. "Model-Based Clustering of Multiple Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 78-89, January.
    6. D. S. Coates & P. J. Diggle, 1986. "Tests For Comparing Two Estimated Spectral Densities," Journal of Time Series Analysis, Wiley Blackwell, vol. 7(1), pages 7-20, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Hailin, 2015. "Piecewise aggregate representations and lower-bound distance functions for multivariate time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 10-25.
    2. Liu, Shen & Maharaj, Elizabeth Ann & Inder, Brett, 2014. "Polarization of forecast densities: A new approach to time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 345-361.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jane L. Harvill & Priya Kohli & Nalini Ravishanker, 2017. "Clustering Nonlinear, Nonstationary Time Series Using BSLEX," Methodology and Computing in Applied Probability, Springer, vol. 19(3), pages 935-955, September.
    2. Mahmoudi, Mohammad Reza, 2021. "A computational technique to classify several fractional Brownian motion processes," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    3. de Lima, Pedro J. F., 1997. "On the robustness of nonlinearity tests to moment condition failure," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 251-280.
    4. William A. Barnett & Melvin J. Hinich & Piyu Yue, 2011. "The Exact Theoretical Rational Expectations Monetary Aggregate," World Scientific Book Chapters, in: Financial Aggregation And Index Number Theory, chapter 2, pages 53-84, World Scientific Publishing Co. Pte. Ltd..
    5. Beibei Zhang & Rong Chen, 2018. "Nonlinear Time Series Clustering Based on Kolmogorov-Smirnov 2D Statistic," Journal of Classification, Springer;The Classification Society, vol. 35(3), pages 394-421, October.
    6. Teles, Paulo & Wei, William W. S., 2000. "The effects of temporal aggregation on tests of linearity of a time series," Computational Statistics & Data Analysis, Elsevier, vol. 34(1), pages 91-103, July.
    7. Tyler Roick & Dimitris Karlis & Paul D. McNicholas, 2021. "Clustering discrete-valued time series," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(1), pages 209-229, March.
    8. Jentsch, Carsten & Pauly, Markus, 2012. "A note on using periodogram-based distances for comparing spectral densities," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 158-164.
    9. Mahmoudi, Mohammad Reza & Heydari, Mohammad Hossein & Roohi, Reza, 2019. "A new method to compare the spectral densities of two independent periodically correlated time series," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 160(C), pages 103-110.
    10. Olmedo, Elena, 2011. "Is there chaos in the Spanish labour market?," Chaos, Solitons & Fractals, Elsevier, vol. 44(12), pages 1045-1053.
    11. Caiado, Jorge & Crato, Nuno & Peña, Daniel, 2006. "An interpolated periodogram-based metric for comparison of time series with unequal lengths," MPRA Paper 2075, University Library of Munich, Germany.
    12. Caiado, Jorge & Crato, Nuno & Peña, Daniel, 2009. "Comparison of time series with unequal length in the frequency domain," MPRA Paper 15310, University Library of Munich, Germany.
    13. Guy Melard, 1994. "Modèles linéaires et non linéaires," ULB Institutional Repository 2013/13804, ULB -- Universite Libre de Bruxelles.
    14. Jorge Caiado & Nuno Crato & Pilar Poncela, 2020. "A fragmented-periodogram approach for clustering big data time series," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(1), pages 117-146, March.
    15. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    16. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, November.
    17. Nesmith Travis D & Jones Barry E, 2008. "Linear Cointegration of Nonlinear Time Series with an Application to Interest Rate Dynamics," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(1), pages 1-18, March.
    18. William A. Barnett & A. Ronald Gallant & Melvin J. Hinich & Jochen A. Jungeilges & Daniel T. Kaplan, 2004. "A Single-Blind Controlled Competition Among Tests for Nonlinearity and Chaos," Contributions to Economic Analysis, in: Functional Structure and Approximation in Econometrics, pages 581-615, Emerald Group Publishing Limited.
    19. Jin, Lei, 2011. "A data-driven test to compare two or multiple time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2183-2196, June.
    20. Ahn, Eun S. & Lee, Jin Man, 2012. "The Performance Of Nonlinearity Tests On Asymmetric Nonlinear Time Series," The Journal of Economic Asymmetries, Elsevier, vol. 9(2), pages 11-44.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:64:y:2013:i:c:p:113-131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.