Comparison of time series with unequal length in the frequency domain
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Maharaj, Elizabeth Ann, 2002.
"Comparison of non-stationary time series in the frequency domain,"
Computational Statistics & Data Analysis, Elsevier, vol. 40(1), pages 131-141, July.
- Maharaj, E.A., 2001. "Comparison of Non-Stationary Time Series in the Frequency Domain," Monash Econometrics and Business Statistics Working Papers 1/01, Monash University, Department of Econometrics and Business Statistics.
- Camacho, Maximo & Perez-Quiros, Gabriel & Saiz, Lorena, 2006.
"Are European business cycles close enough to be just one?,"
Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1687-1706.
- Máximo Camacho & Gabriel Pérez-Quirós & Lorena Saiz, 2004. "Are european business cycles close enough to be just one?," Working Papers 0408, Banco de España.
- Pérez-Quirós, Gabriel & Camacho, Máximo & ,, 2005. "Are European Business Cycles Close Enough to be Just One?," CEPR Discussion Papers 4824, C.E.P.R. Discussion Papers.
- Maximo Camacho & Gabriel Perez-Quiros, 2004. "Are European business cycles close enough to be just one?," Computing in Economics and Finance 2004 16, Society for Computational Economics.
- Caiado, Jorge & Crato, Nuno & Pena, Daniel, 2006. "A periodogram-based metric for time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2668-2684, June.
- Peter J. Diggle & Nicholas I. Fisher, 1991. "Nonparametric Comparison of Cumulative Periodograms," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 40(3), pages 423-434, November.
- D. S. Coates & P. J. Diggle, 1986. "Tests For Comparing Two Estimated Spectral Densities," Journal of Time Series Analysis, Wiley Blackwell, vol. 7(1), pages 7-20, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- João A. Bastos & Jorge Caiado, 2014.
"Clustering financial time series with variance ratio statistics,"
Quantitative Finance, Taylor & Francis Journals, vol. 14(12), pages 2121-2133, December.
- Joao A. Bastos & Jorge Caiado, 2009. "Clustering financial time series with variance ratio statistics," CEMAPRE Working Papers 0904, Centre for Applied Mathematics and Economics (CEMAPRE), School of Economics and Management (ISEG), Technical University of Lisbon.
- Jonathan Decowski & Linyuan Li, 2015. "Wavelet-Based Tests for Comparing Two Time Series with Unequal Lengths," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(2), pages 189-208, March.
- Maharaj, Elizabeth Ann & D’Urso, Pierpaolo, 2010. "A coherence-based approach for the pattern recognition of time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3516-3537.
- Jentsch, Carsten & Pauly, Markus, 2012. "A note on using periodogram-based distances for comparing spectral densities," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 158-164.
- Jorge Caiado & Nuno Crato, 2010.
"Identifying common dynamic features in stock returns,"
Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 797-807.
- Jorge Caiado & Nuno Crato, 2009. "Identifying common dynamic features in stock returns," CEMAPRE Working Papers 0902, Centre for Applied Mathematics and Economics (CEMAPRE), School of Economics and Management (ISEG), Technical University of Lisbon.
- Caiado, Jorge & Crato, Nuno, 2009. "Identifying common dynamic features in stock returns," MPRA Paper 15241, University Library of Munich, Germany.
- Preuß, Philip & Hildebrandt, Thimo, 2013. "Comparing spectral densities of stationary time series with unequal sample sizes," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1174-1183.
- Otranto, Edoardo, 2010.
"Identifying financial time series with similar dynamic conditional correlation,"
Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 1-15, January.
- E. Otranto, 2008. "Identifying Financial Time Series with Similar Dynamic Conditional Correlation," Working Paper CRENoS 200817, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- Mahdi Massahi & Masoud Mahootchi & Alireza Arshadi Khamseh, 2020. "Development of an efficient cluster-based portfolio optimization model under realistic market conditions," Empirical Economics, Springer, vol. 59(5), pages 2423-2442, November.
- Lei Jin & Suojin Wang, 2016. "A New Test for Checking the Equality of the Correlation Structures of two time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 355-368, May.
- Carolina Euán & Hernando Ombao & Joaquín Ortega, 2018. "The Hierarchical Spectral Merger Algorithm: A New Time Series Clustering Procedure," Journal of Classification, Springer;The Classification Society, vol. 35(1), pages 71-99, April.
- Jin, Lei, 2011. "A data-driven test to compare two or multiple time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2183-2196, June.
- B. Lafuente-Rego & P. D’Urso & J. A. Vilar, 2020. "Robust fuzzy clustering based on quantile autocovariances," Statistical Papers, Springer, vol. 61(6), pages 2393-2448, December.
- Harvill, Jane L. & Ravishanker, Nalini & Ray, Bonnie K., 2013. "Bispectral-based methods for clustering time series," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 113-131.
- Goffinet, Etienne & Lebbah, Mustapha & Azzag, Hanane & Loïc, Giraldi & Coutant, Anthony, 2022. "Functional non-parametric latent block model: A multivariate time series clustering approach for autonomous driving validation," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
- Jorge Caiado & Nuno Crato & Pilar Poncela, 2020. "A fragmented-periodogram approach for clustering big data time series," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(1), pages 117-146, March.
- João A. Bastos & Jorge Caiado, 2021. "On the classification of financial data with domain agnostic features," Working Papers REM 2021/0185, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
- Mahmoudi, Mohammad Reza, 2021. "A computational technique to classify several fractional Brownian motion processes," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Caiado, Jorge & Crato, Nuno & Peña, Daniel, 2007. "Comparison of time series with unequal length," MPRA Paper 6605, University Library of Munich, Germany.
- Mahmoudi, Mohammad Reza, 2021. "A computational technique to classify several fractional Brownian motion processes," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
- Jentsch, Carsten & Pauly, Markus, 2012. "A note on using periodogram-based distances for comparing spectral densities," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 158-164.
- Mahmoudi, Mohammad Reza & Heydari, Mohammad Hossein & Roohi, Reza, 2019. "A new method to compare the spectral densities of two independent periodically correlated time series," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 160(C), pages 103-110.
- Caiado, Jorge & Crato, Nuno & Peña, Daniel, 2006. "An interpolated periodogram-based metric for comparison of time series with unequal lengths," MPRA Paper 2075, University Library of Munich, Germany.
- Preuß, Philip & Hildebrandt, Thimo, 2013. "Comparing spectral densities of stationary time series with unequal sample sizes," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1174-1183.
- Jorge Caiado & Nuno Crato & Pilar Poncela, 2020. "A fragmented-periodogram approach for clustering big data time series," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(1), pages 117-146, March.
- Dette, Holger & Paparoditis, Efstathios, 2008. "Bootstrapping frequency domain tests in multivariate time series with an application to comparing spectral densities," Technical Reports 2008,28, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
- Jin, Lei, 2021. "Robust tests for time series comparison based on Laplace periodograms," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
- João A. Bastos & Jorge Caiado, 2014.
"Clustering financial time series with variance ratio statistics,"
Quantitative Finance, Taylor & Francis Journals, vol. 14(12), pages 2121-2133, December.
- Joao A. Bastos & Jorge Caiado, 2009. "Clustering financial time series with variance ratio statistics," CEMAPRE Working Papers 0904, Centre for Applied Mathematics and Economics (CEMAPRE), School of Economics and Management (ISEG), Technical University of Lisbon.
- Daniel Cirkovic & Thomas J. Fisher, 2021. "On testing for the equality of autocovariance in time series," Environmetrics, John Wiley & Sons, Ltd., vol. 32(7), November.
- Carolina Euán & Hernando Ombao & Joaquín Ortega, 2018. "The Hierarchical Spectral Merger Algorithm: A New Time Series Clustering Procedure," Journal of Classification, Springer;The Classification Society, vol. 35(1), pages 71-99, April.
- Caiado, Jorge & Crato, Nuno & Pena, Daniel, 2006. "A periodogram-based metric for time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2668-2684, June.
- Harvill, Jane L. & Ravishanker, Nalini & Ray, Bonnie K., 2013. "Bispectral-based methods for clustering time series," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 113-131.
- Caiado, Jorge & Crato, Nuno, 2005. "Discrimination between deterministic trend and stochastic trend processes," MPRA Paper 2076, University Library of Munich, Germany.
- Sonia Díaz & José Vilar, 2010. "Comparing Several Parametric and Nonparametric Approaches to Time Series Clustering: A Simulation Study," Journal of Classification, Springer;The Classification Society, vol. 27(3), pages 333-362, November.
- Xu Gao & Babak Shahbaba & Hernando Ombao, 2018. "Modeling Binary Time Series Using Gaussian Processes with Application to Predicting Sleep States," Journal of Classification, Springer;The Classification Society, vol. 35(3), pages 549-579, October.
- Pierpaolo D’Urso & Livia Giovanni & Riccardo Massari & Dario Lallo, 2013. "Noise fuzzy clustering of time series by autoregressive metric," METRON, Springer;Sapienza Università di Roma, vol. 71(3), pages 217-243, November.
- Michela Borghesi, 2020. "Metodi statistici per il confronto di serie storiche con applicazioni finanziarie," Working Papers 2020049, University of Ferrara, Department of Economics.
- Alonso, Andres M. & Maharaj, Elizabeth A., 2006.
"Comparison of time series using subsampling,"
Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2589-2599, June.
- Maharaj, Elizabeth Ann, 2005. "On the comparison of time series using subsampling," DES - Working Papers. Statistics and Econometrics. WS ws050702, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
More about this item
Keywords
Autocorrelation function; Cluster analysis; Interpolated periodogram; Reduced periodogram; Spectral analysis; Time series; Zero-padding.;All these keywords.
JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C0 - Mathematical and Quantitative Methods - - General
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2009-05-30 (Econometrics)
- NEP-ETS-2009-05-30 (Econometric Time Series)
- NEP-FOR-2009-05-30 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:15310. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.