IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/15310.html
   My bibliography  Save this paper

Comparison of time series with unequal length in the frequency domain

Author

Listed:
  • Caiado, Jorge
  • Crato, Nuno
  • Peña, Daniel

Abstract

In statistical data analysis it is often important to compare, classify, and cluster different time series. For these purposes various methods have been proposed in the literature, but they usually assume time series with the same sample size. In this paper, we propose a spectral domain method for handling time series of unequal length. The method make the spectral estimates comparable by producing statistics at the same frequency. The procedure is compared with other methods proposed in the literature by a Monte Carlo simulation study. As an illustrative example, the proposed spectral method is applied to cluster industrial production series of some developed countries.

Suggested Citation

  • Caiado, Jorge & Crato, Nuno & Peña, Daniel, 2009. "Comparison of time series with unequal length in the frequency domain," MPRA Paper 15310, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:15310
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/15310/1/MPRA_paper_15310.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maharaj, Elizabeth Ann, 2002. "Comparison of non-stationary time series in the frequency domain," Computational Statistics & Data Analysis, Elsevier, vol. 40(1), pages 131-141, July.
    2. Camacho, Maximo & Perez-Quiros, Gabriel & Saiz, Lorena, 2006. "Are European business cycles close enough to be just one?," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1687-1706.
    3. Caiado, Jorge & Crato, Nuno & Pena, Daniel, 2006. "A periodogram-based metric for time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2668-2684, June.
    4. Peter J. Diggle & Nicholas I. Fisher, 1991. "Nonparametric Comparison of Cumulative Periodograms," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 40(3), pages 423-434, November.
    5. D. S. Coates & P. J. Diggle, 1986. "Tests For Comparing Two Estimated Spectral Densities," Journal of Time Series Analysis, Wiley Blackwell, vol. 7(1), pages 7-20, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. João A. Bastos & Jorge Caiado, 2014. "Clustering financial time series with variance ratio statistics," Quantitative Finance, Taylor & Francis Journals, vol. 14(12), pages 2121-2133, December.
    2. Jonathan Decowski & Linyuan Li, 2015. "Wavelet-Based Tests for Comparing Two Time Series with Unequal Lengths," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(2), pages 189-208, March.
    3. Maharaj, Elizabeth Ann & D’Urso, Pierpaolo, 2010. "A coherence-based approach for the pattern recognition of time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3516-3537.
    4. Jentsch, Carsten & Pauly, Markus, 2012. "A note on using periodogram-based distances for comparing spectral densities," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 158-164.
    5. Jorge Caiado & Nuno Crato, 2010. "Identifying common dynamic features in stock returns," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 797-807.
    6. Preuß, Philip & Hildebrandt, Thimo, 2013. "Comparing spectral densities of stationary time series with unequal sample sizes," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1174-1183.
    7. Otranto, Edoardo, 2010. "Identifying financial time series with similar dynamic conditional correlation," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 1-15, January.
    8. Mahdi Massahi & Masoud Mahootchi & Alireza Arshadi Khamseh, 2020. "Development of an efficient cluster-based portfolio optimization model under realistic market conditions," Empirical Economics, Springer, vol. 59(5), pages 2423-2442, November.
    9. Lei Jin & Suojin Wang, 2016. "A New Test for Checking the Equality of the Correlation Structures of two time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 355-368, May.
    10. Carolina Euán & Hernando Ombao & Joaquín Ortega, 2018. "The Hierarchical Spectral Merger Algorithm: A New Time Series Clustering Procedure," Journal of Classification, Springer;The Classification Society, vol. 35(1), pages 71-99, April.
    11. Jin, Lei, 2011. "A data-driven test to compare two or multiple time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2183-2196, June.
    12. B. Lafuente-Rego & P. D’Urso & J. A. Vilar, 2020. "Robust fuzzy clustering based on quantile autocovariances," Statistical Papers, Springer, vol. 61(6), pages 2393-2448, December.
    13. Harvill, Jane L. & Ravishanker, Nalini & Ray, Bonnie K., 2013. "Bispectral-based methods for clustering time series," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 113-131.
    14. Goffinet, Etienne & Lebbah, Mustapha & Azzag, Hanane & Loïc, Giraldi & Coutant, Anthony, 2022. "Functional non-parametric latent block model: A multivariate time series clustering approach for autonomous driving validation," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
    15. Jorge Caiado & Nuno Crato & Pilar Poncela, 2020. "A fragmented-periodogram approach for clustering big data time series," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(1), pages 117-146, March.
    16. João A. Bastos & Jorge Caiado, 2021. "On the classification of financial data with domain agnostic features," Working Papers REM 2021/0185, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    17. Mahmoudi, Mohammad Reza, 2021. "A computational technique to classify several fractional Brownian motion processes," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caiado, Jorge & Crato, Nuno & Peña, Daniel, 2007. "Comparison of time series with unequal length," MPRA Paper 6605, University Library of Munich, Germany.
    2. Mahmoudi, Mohammad Reza, 2021. "A computational technique to classify several fractional Brownian motion processes," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    3. Jentsch, Carsten & Pauly, Markus, 2012. "A note on using periodogram-based distances for comparing spectral densities," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 158-164.
    4. Mahmoudi, Mohammad Reza & Heydari, Mohammad Hossein & Roohi, Reza, 2019. "A new method to compare the spectral densities of two independent periodically correlated time series," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 160(C), pages 103-110.
    5. Caiado, Jorge & Crato, Nuno & Peña, Daniel, 2006. "An interpolated periodogram-based metric for comparison of time series with unequal lengths," MPRA Paper 2075, University Library of Munich, Germany.
    6. Preuß, Philip & Hildebrandt, Thimo, 2013. "Comparing spectral densities of stationary time series with unequal sample sizes," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1174-1183.
    7. Jorge Caiado & Nuno Crato & Pilar Poncela, 2020. "A fragmented-periodogram approach for clustering big data time series," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(1), pages 117-146, March.
    8. Dette, Holger & Paparoditis, Efstathios, 2008. "Bootstrapping frequency domain tests in multivariate time series with an application to comparing spectral densities," Technical Reports 2008,28, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    9. Jin, Lei, 2021. "Robust tests for time series comparison based on Laplace periodograms," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    10. João A. Bastos & Jorge Caiado, 2014. "Clustering financial time series with variance ratio statistics," Quantitative Finance, Taylor & Francis Journals, vol. 14(12), pages 2121-2133, December.
    11. Daniel Cirkovic & Thomas J. Fisher, 2021. "On testing for the equality of autocovariance in time series," Environmetrics, John Wiley & Sons, Ltd., vol. 32(7), November.
    12. Carolina Euán & Hernando Ombao & Joaquín Ortega, 2018. "The Hierarchical Spectral Merger Algorithm: A New Time Series Clustering Procedure," Journal of Classification, Springer;The Classification Society, vol. 35(1), pages 71-99, April.
    13. Caiado, Jorge & Crato, Nuno & Pena, Daniel, 2006. "A periodogram-based metric for time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2668-2684, June.
    14. Harvill, Jane L. & Ravishanker, Nalini & Ray, Bonnie K., 2013. "Bispectral-based methods for clustering time series," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 113-131.
    15. Caiado, Jorge & Crato, Nuno, 2005. "Discrimination between deterministic trend and stochastic trend processes," MPRA Paper 2076, University Library of Munich, Germany.
    16. Sonia Díaz & José Vilar, 2010. "Comparing Several Parametric and Nonparametric Approaches to Time Series Clustering: A Simulation Study," Journal of Classification, Springer;The Classification Society, vol. 27(3), pages 333-362, November.
    17. Xu Gao & Babak Shahbaba & Hernando Ombao, 2018. "Modeling Binary Time Series Using Gaussian Processes with Application to Predicting Sleep States," Journal of Classification, Springer;The Classification Society, vol. 35(3), pages 549-579, October.
    18. Pierpaolo D’Urso & Livia Giovanni & Riccardo Massari & Dario Lallo, 2013. "Noise fuzzy clustering of time series by autoregressive metric," METRON, Springer;Sapienza Università di Roma, vol. 71(3), pages 217-243, November.
    19. Michela Borghesi, 2020. "Metodi statistici per il confronto di serie storiche con applicazioni finanziarie," Working Papers 2020049, University of Ferrara, Department of Economics.
    20. Alonso, Andres M. & Maharaj, Elizabeth A., 2006. "Comparison of time series using subsampling," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2589-2599, June.

    More about this item

    Keywords

    Autocorrelation function; Cluster analysis; Interpolated periodogram; Reduced periodogram; Spectral analysis; Time series; Zero-padding.;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C0 - Mathematical and Quantitative Methods - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:15310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.