IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v39y2024i6d10.1007_s00180-023-01425-6.html
   My bibliography  Save this article

Fuzzy clustering of time series based on weighted conditional higher moments

Author

Listed:
  • Roy Cerqueti

    (Sapienza University of Rome
    University of Angers)

  • Pierpaolo D’Urso

    (Sapienza University of Rome)

  • Livia Giovanni

    (LUISS Guido Carli)

  • Raffaele Mattera

    (Sapienza University of Rome)

  • Vincenzina Vitale

    (Sapienza University of Rome)

Abstract

This paper proposes a new approach to fuzzy clustering of time series based on the dissimilarity among conditional higher moments. A system of weights accounts for the relevance of each conditional moment in defining the clusters. Robustness against outliers is also considered by extending the above clustering method using a suitable exponential transformation of the distance measure defined on the conditional higher moments. To show the usefulness of the proposed approach, we provide a study with simulated data and an empirical application to the time series of stocks included in the FTSEMIB 30 Index.

Suggested Citation

  • Roy Cerqueti & Pierpaolo D’Urso & Livia Giovanni & Raffaele Mattera & Vincenzina Vitale, 2024. "Fuzzy clustering of time series based on weighted conditional higher moments," Computational Statistics, Springer, vol. 39(6), pages 3091-3114, September.
  • Handle: RePEc:spr:compst:v:39:y:2024:i:6:d:10.1007_s00180-023-01425-6
    DOI: 10.1007/s00180-023-01425-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-023-01425-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-023-01425-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jorge Caiado & Nuno Crato, 2010. "Identifying common dynamic features in stock returns," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 797-807.
    2. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    3. Caiado, Jorge & Crato, Nuno & Pena, Daniel, 2006. "A periodogram-based metric for time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2668-2684, June.
    4. Jorge Caiado & Nuno Crato & Pilar Poncela, 2020. "A fragmented-periodogram approach for clustering big data time series," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(1), pages 117-146, March.
    5. Leon, Angel & Rubio, Gonzalo & Serna, Gregorio, 2005. "Autoregresive conditional volatility, skewness and kurtosis," The Quarterly Review of Economics and Finance, Elsevier, vol. 45(4-5), pages 599-618, September.
    6. Alonso, Andres M. & Maharaj, Elizabeth A., 2006. "Comparison of time series using subsampling," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2589-2599, June.
    7. Otranto, Edoardo, 2008. "Clustering heteroskedastic time series by model-based procedures," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4685-4698, June.
    8. João A. Bastos & Jorge Caiado, 2021. "On the classification of financial data with domain agnostic features," Working Papers REM 2021/0185, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    9. Domenico Piccolo, 1990. "A Distance Measure For Classifying Arima Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 11(2), pages 153-164, March.
    10. Roy Cerqueti & M. Giacalone & R. Mattera, 2021. "Model-based fuzzy time series clustering of conditional higher moments," Post-Print hal-03789115, HAL.
    11. Elizabeth Ann Maharaj & Pierpaolo D’Urso & Don Galagedera, 2010. "Wavelet-based Fuzzy Clustering of Time Series," Journal of Classification, Springer;The Classification Society, vol. 27(2), pages 231-275, September.
    12. Campbell Harvey & John Liechty & Merrill Liechty & Peter Muller, 2010. "Portfolio selection with higher moments," Quantitative Finance, Taylor & Francis Journals, vol. 10(5), pages 469-485.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. João A. Bastos & Jorge Caiado, 2021. "On the classification of financial data with domain agnostic features," Working Papers REM 2021/0185, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    2. Raffaele Mattera & Philipp Otto, 2023. "Network log-ARCH models for forecasting stock market volatility," Papers 2303.11064, arXiv.org.
    3. Albino, Andreia & Caiado, Jorge & Crato, Nuno, 2024. "Time series clustering using fragmented autocorrelations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 650(C).
    4. B. Lafuente-Rego & P. D’Urso & J. A. Vilar, 2020. "Robust fuzzy clustering based on quantile autocovariances," Statistical Papers, Springer, vol. 61(6), pages 2393-2448, December.
    5. Luis Lorenzo & Javier Arroyo, 2023. "Online risk-based portfolio allocation on subsets of crypto assets applying a prototype-based clustering algorithm," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-40, December.
    6. Pierpaolo D’Urso & Livia Giovanni & Riccardo Massari & Dario Lallo, 2013. "Noise fuzzy clustering of time series by autoregressive metric," METRON, Springer;Sapienza Università di Roma, vol. 71(3), pages 217-243, November.
    7. Liu, Shen & Maharaj, Elizabeth Ann, 2013. "A hypothesis test using bias-adjusted AR estimators for classifying time series in small samples," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 32-49.
    8. Lúcio, Francisco & Caiado, Jorge, 2022. "COVID-19 and Stock Market Volatility: A Clustering Approach for S&P 500 Industry Indices," Finance Research Letters, Elsevier, vol. 49(C).
    9. Fabrizio Durante & Roberta Pappadà & Nicola Torelli, 2014. "Clustering of financial time series in risky scenarios," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(4), pages 359-376, December.
    10. João A. Bastos & Jorge Caiado, 2014. "Clustering financial time series with variance ratio statistics," Quantitative Finance, Taylor & Francis Journals, vol. 14(12), pages 2121-2133, December.
    11. De Gregorio, Alessandro & Maria Iacus, Stefano, 2010. "Clustering of discretely observed diffusion processes," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 598-606, February.
    12. Sonia Díaz & José Vilar, 2010. "Comparing Several Parametric and Nonparametric Approaches to Time Series Clustering: A Simulation Study," Journal of Classification, Springer;The Classification Society, vol. 27(3), pages 333-362, November.
    13. E. Otranto, 2011. "Classification of Volatility in Presence of Changes in Model Parameters," Working Paper CRENoS 201113, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    14. Jorge Caiado & Nuno Crato & Pilar Poncela, 2020. "A fragmented-periodogram approach for clustering big data time series," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(1), pages 117-146, March.
    15. Jin, Lei, 2011. "A data-driven test to compare two or multiple time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2183-2196, June.
    16. Fabrizio Durante & Roberta Pappadà & Nicola Torelli, 2015. "Clustering of time series via non-parametric tail dependence estimation," Statistical Papers, Springer, vol. 56(3), pages 701-721, August.
    17. Vilar, J.A. & Alonso, A.M. & Vilar, J.M., 2010. "Non-linear time series clustering based on non-parametric forecast densities," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2850-2865, November.
    18. Umberto Triacca, 2016. "Measuring the Distance between Sets of ARMA Models," Econometrics, MDPI, vol. 4(3), pages 1-11, July.
    19. Otranto, Edoardo, 2010. "Identifying financial time series with similar dynamic conditional correlation," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 1-15, January.
    20. Juan Vilar & José Vilar & Sonia Pértega, 2009. "Classifying Time Series Data: A Nonparametric Approach," Journal of Classification, Springer;The Classification Society, vol. 26(1), pages 3-28, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:6:d:10.1007_s00180-023-01425-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.