Non-linear time series clustering based on non-parametric forecast densities
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Maharaj, E.A., 1994. "A Significance Test for Classifying ARMA Models," Monash Econometrics and Business Statistics Working Papers 18/94, Monash University, Department of Econometrics and Business Statistics.
- Alonso, A.M. & Berrendero, J.R. & Hernandez, A. & Justel, A., 2006. "Time series clustering based on forecast densities," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 762-776, November.
- Giordano, Francesco & La Rocca, Michele & Perna, Cira, 2007. "Forecasting nonlinear time series with neural network sieve bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3871-3884, May.
- Douzal-Chouakria, Ahlame & Diallo, Alpha & Giroud, Françoise, 2009. "Adaptive clustering for time series: Application for identifying cell cycle expressed genes," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1414-1426, February.
- Caiado, Jorge & Crato, Nuno & Pena, Daniel, 2006. "A periodogram-based metric for time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2668-2684, June.
- A. I. McLeod & W. K. Li, 1983. "Diagnostic Checking Arma Time Series Models Using Squared‐Residual Autocorrelations," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 269-273, July.
- Corduas, Marcella & Piccolo, Domenico, 2008. "Time series clustering and classification by the autoregressive metric," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1860-1872, January.
- Yao, Qiwei & Tong, Howell, 1994. "On subset selection in non-parametric stochastic regression," LSE Research Online Documents on Economics 6409, London School of Economics and Political Science, LSE Library.
- Otranto, Edoardo, 2008.
"Clustering heteroskedastic time series by model-based procedures,"
Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4685-4698, June.
- E. Otranto, 2008. "Clustering Heteroskedastic Time Series by Model-Based Procedures," Working Paper CRENoS 200801, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- Domenico Piccolo, 1990. "A Distance Measure For Classifying Arima Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 11(2), pages 153-164, March.
- Victor Gómez & Agustín Maravall, 1996. "Programs TRAMO and SEATS, Instruction for User (Beta Version: september 1996)," Working Papers 9628, Banco de España.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ozan Cinar & Ozlem Ilk & Cem Iyigun, 2018. "Clustering of short time-course gene expression data with dissimilar replicates," Annals of Operations Research, Springer, vol. 263(1), pages 405-428, April.
- Beibei Zhang & Rong Chen, 2018. "Nonlinear Time Series Clustering Based on Kolmogorov-Smirnov 2D Statistic," Journal of Classification, Springer;The Classification Society, vol. 35(3), pages 394-421, October.
- Liu, Shen & Maharaj, Elizabeth Ann & Inder, Brett, 2014. "Polarization of forecast densities: A new approach to time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 345-361.
- B. Lafuente-Rego & P. D’Urso & J. A. Vilar, 2020. "Robust fuzzy clustering based on quantile autocovariances," Statistical Papers, Springer, vol. 61(6), pages 2393-2448, December.
- Sonia Díaz & José Vilar, 2010. "Comparing Several Parametric and Nonparametric Approaches to Time Series Clustering: A Simulation Study," Journal of Classification, Springer;The Classification Society, vol. 27(3), pages 333-362, November.
- Pierpaolo D’Urso & Livia Giovanni & Riccardo Massari & Dario Lallo, 2013. "Noise fuzzy clustering of time series by autoregressive metric," METRON, Springer;Sapienza Università di Roma, vol. 71(3), pages 217-243, November.
- Liu, Shen & Maharaj, Elizabeth Ann, 2013. "A hypothesis test using bias-adjusted AR estimators for classifying time series in small samples," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 32-49.
- Giovanni De Luca & Paola Zuccolotto, 2011. "A tail dependence-based dissimilarity measure for financial time series clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(4), pages 323-340, December.
- De Luca Giovanni & Zuccolotto Paola, 2017. "A double clustering algorithm for financial time series based on extreme events," Statistics & Risk Modeling, De Gruyter, vol. 34(1-2), pages 1-12, June.
- Montero, Pablo & Vilar, José A., 2014. "TSclust: An R Package for Time Series Clustering," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 62(i01).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liu, Shen & Maharaj, Elizabeth Ann, 2013. "A hypothesis test using bias-adjusted AR estimators for classifying time series in small samples," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 32-49.
- Sonia Díaz & José Vilar, 2010. "Comparing Several Parametric and Nonparametric Approaches to Time Series Clustering: A Simulation Study," Journal of Classification, Springer;The Classification Society, vol. 27(3), pages 333-362, November.
- De Gregorio, Alessandro & Maria Iacus, Stefano, 2010.
"Clustering of discretely observed diffusion processes,"
Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 598-606, February.
- Alessandro De Gregorio & Stefano Iacus, 2008. "Clustering of discretely observed diffusion processes," UNIMI - Research Papers in Economics, Business, and Statistics unimi-1077, Universitá degli Studi di Milano.
- Alessandro De Gregorio & Stefano Maria Iacus, 2008. "Clustering of discretely observed diffusion processes," Papers 0809.3902, arXiv.org.
- Pierpaolo D’Urso & Livia Giovanni & Riccardo Massari & Dario Lallo, 2013. "Noise fuzzy clustering of time series by autoregressive metric," METRON, Springer;Sapienza Università di Roma, vol. 71(3), pages 217-243, November.
- E. Otranto, 2011. "Classification of Volatility in Presence of Changes in Model Parameters," Working Paper CRENoS 201113, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- Umberto Triacca, 2016. "Measuring the Distance between Sets of ARMA Models," Econometrics, MDPI, vol. 4(3), pages 1-11, July.
- Otranto, Edoardo, 2010.
"Identifying financial time series with similar dynamic conditional correlation,"
Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 1-15, January.
- E. Otranto, 2008. "Identifying Financial Time Series with Similar Dynamic Conditional Correlation," Working Paper CRENoS 200817, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- Di Iorio, Francesca & Triacca, Umberto, 2013. "Testing for Granger non-causality using the autoregressive metric," Economic Modelling, Elsevier, vol. 33(C), pages 120-125.
- Corduas, Marcella & Piccolo, Domenico, 2008. "Time series clustering and classification by the autoregressive metric," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1860-1872, January.
- Giovanni De Luca & Paola Zuccolotto, 2011. "A tail dependence-based dissimilarity measure for financial time series clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(4), pages 323-340, December.
- Otranto, Edoardo, 2008.
"Clustering heteroskedastic time series by model-based procedures,"
Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4685-4698, June.
- E. Otranto, 2008. "Clustering Heteroskedastic Time Series by Model-Based Procedures," Working Paper CRENoS 200801, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- Francesca Di Iorio & Umberto Triacca, 2014. "Testing for A Set of Linear Restrictions in VARMA Models Using Autoregressive Metric: An Application to Granger Causality Test," Econometrics, MDPI, vol. 2(4), pages 1-14, December.
- B. Lafuente-Rego & P. D’Urso & J. A. Vilar, 2020. "Robust fuzzy clustering based on quantile autocovariances," Statistical Papers, Springer, vol. 61(6), pages 2393-2448, December.
- Liu, Shen & Maharaj, Elizabeth Ann & Inder, Brett, 2014. "Polarization of forecast densities: A new approach to time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 345-361.
- Roy Cerqueti & Pierpaolo D’Urso & Livia Giovanni & Raffaele Mattera & Vincenzina Vitale, 2024. "Fuzzy clustering of time series based on weighted conditional higher moments," Computational Statistics, Springer, vol. 39(6), pages 3091-3114, September.
- Alonso, Andres M. & Sipols, Ana E., 2008. "A time series bootstrap procedure for interpolation intervals," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1792-1805, January.
- Juan Vilar & José Vilar & Sonia Pértega, 2009. "Classifying Time Series Data: A Nonparametric Approach," Journal of Classification, Springer;The Classification Society, vol. 26(1), pages 3-28, April.
- Beibei Zhang & Rong Chen, 2018. "Nonlinear Time Series Clustering Based on Kolmogorov-Smirnov 2D Statistic," Journal of Classification, Springer;The Classification Society, vol. 35(3), pages 394-421, October.
- Mahmoudi, Mohammad Reza, 2021. "A computational technique to classify several fractional Brownian motion processes," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
- De Luca Giovanni & Zuccolotto Paola, 2017. "A double clustering algorithm for financial time series based on extreme events," Statistics & Risk Modeling, De Gruyter, vol. 34(1-2), pages 1-12, June.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:11:p:2850-2865. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.