IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v38y2021i3d10.1007_s00357-020-09382-1.html
   My bibliography  Save this article

Clustering Brain Signals: a Robust Approach Using Functional Data Ranking

Author

Listed:
  • Tianbo Chen

    (King Abdullah University of Science and Technology (KAUST))

  • Ying Sun

    (King Abdullah University of Science and Technology (KAUST))

  • Carolina Euan

    (King Abdullah University of Science and Technology (KAUST))

  • Hernando Ombao

    (King Abdullah University of Science and Technology (KAUST))

Abstract

In this paper, we analyze electroencephalograms (EEGs) which are recordings of brain electrical activity. We develop new clustering methods for identifying synchronized brain regions, where the EEGs show similar oscillations or waveforms according to their spectral densities. We treat the estimated spectral densities from many epochs or trials as functional data and develop clustering algorithms based on functional data ranking. The two proposed clustering algorithms use different dissimilarity measures: distance of the functional medians and the area of the central region. The performance of the proposed algorithms is examined by simulation studies. We show that, when contaminations are present, the proposed methods for clustering spectral densities are more robust than the mean-based methods. The developed methods are applied to two stages of resting state EEG data from a male college student, corresponding to early exploration of functional connectivity in the human brain.

Suggested Citation

  • Tianbo Chen & Ying Sun & Carolina Euan & Hernando Ombao, 2021. "Clustering Brain Signals: a Robust Approach Using Functional Data Ranking," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 425-442, October.
  • Handle: RePEc:spr:jclass:v:38:y:2021:i:3:d:10.1007_s00357-020-09382-1
    DOI: 10.1007/s00357-020-09382-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00357-020-09382-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00357-020-09382-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Caiado, Jorge & Crato, Nuno & Pena, Daniel, 2006. "A periodogram-based metric for time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2668-2684, June.
    2. López-Pintado, Sara & Romo, Juan, 2009. "On the Concept of Depth for Functional Data," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 718-734.
    3. Freyermuth, Jean-Marc & Ombao, Hernando & von Sachs, Rainer, 2010. "Tree-Structured Wavelet Estimation in a Mixed Effects Model for Spectra of Replicated Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 634-646.
    4. Carolina Euán & Hernando Ombao & Joaquín Ortega, 2018. "The Hierarchical Spectral Merger Algorithm: A New Time Series Clustering Procedure," Journal of Classification, Springer;The Classification Society, vol. 35(1), pages 71-99, April.
    5. Wenceslao González‐Manteiga & Rosa M. Crujeiras & Ying Sun & Marc G. Genton, 2012. "Adjusted functional boxplots for spatio‐temporal data visualization and outlier detection," Environmetrics, John Wiley & Sons, Ltd., vol. 23(1), pages 54-64, February.
    6. Freyermuth, Jean-Marc & Ombao, Hernando & von Sachs, Rainer, 2010. "Tree-structured wavelet estimation in a mixed effects model for Spectra of replicated time series," LIDAM Reprints ISBA 2010020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Robert T. Krafty, 2016. "Discriminant Analysis of Time Series in the Presence of Within-Group Spectral Variability," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(4), pages 435-450, July.
    8. Montero, Pablo & Vilar, José A., 2014. "TSclust: An R Package for Time Series Clustering," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 62(i01).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carolina Euán & Hernando Ombao & Joaquín Ortega, 2018. "The Hierarchical Spectral Merger Algorithm: A New Time Series Clustering Procedure," Journal of Classification, Springer;The Classification Society, vol. 35(1), pages 71-99, April.
    2. Bali, Juan Lucas & Boente, Graciela, 2015. "Influence function of projection-pursuit principal components for functional data," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 173-199.
    3. Beibei Zhang & Rong Chen, 2018. "Nonlinear Time Series Clustering Based on Kolmogorov-Smirnov 2D Statistic," Journal of Classification, Springer;The Classification Society, vol. 35(3), pages 394-421, October.
    4. Zhuo Qu & Wenlin Dai & Marc G. Genton, 2021. "Robust functional multivariate analysis of variance with environmental applications," Environmetrics, John Wiley & Sons, Ltd., vol. 32(1), February.
    5. Mark Fiecas & Hernando Ombao, 2016. "Modeling the Evolution of Dynamic Brain Processes During an Associative Learning Experiment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1440-1453, October.
    6. Nagy, Stanislav & Ferraty, Frédéric, 2019. "Data depth for measurable noisy random functions," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 95-114.
    7. Francesca Ieva & Anna Maria Paganoni, 2020. "Component-wise outlier detection methods for robustifying multivariate functional samples," Statistical Papers, Springer, vol. 61(2), pages 595-614, April.
    8. Cristian F. Jiménez‐Varón & Fouzi Harrou & Ying Sun, 2024. "Pointwise data depth for univariate and multivariate functional outlier detection," Environmetrics, John Wiley & Sons, Ltd., vol. 35(5), August.
    9. Martínez-Hernández, Israel & Genton, Marc G. & González-Farías, Graciela, 2019. "Robust depth-based estimation of the functional autoregressive model," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 66-79.
    10. Krzysztof Gajowniczek & Tomasz Ząbkowski, 2018. "Simulation Study on Clustering Approaches for Short-Term Electricity Forecasting," Complexity, Hindawi, vol. 2018, pages 1-21, April.
    11. Dai, Wenlin & Mrkvička, Tomáš & Sun, Ying & Genton, Marc G., 2020. "Functional outlier detection and taxonomy by sequential transformations," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
    12. Benny Ren & Ian Barnett, 2022. "Autoregressive mixture models for clustering time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(6), pages 918-937, November.
    13. von Sachs, Rainer, 2019. "Spectral Analysis of Multivariate Time Series," LIDAM Discussion Papers ISBA 2019008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Sipan Aslan & Ceylan Yozgatligil & Cem Iyigun, 2018. "Temporal clustering of time series via threshold autoregressive models: application to commodity prices," Annals of Operations Research, Springer, vol. 260(1), pages 51-77, January.
    15. Dai, Wenlin & Genton, Marc G., 2019. "Directional outlyingness for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 50-65.
    16. Autin, F. & Freyermuth, Jean-Marc & von Sachs, Rainer, 2011. "Ideal denoising within a family of tree-structured wavelet estimators," LIDAM Discussion Papers ISBA 2011002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Carmela Iorio & Gianluca Frasso & Antonio D’Ambrosio & Roberta Siciliano, 2023. "Boosted-oriented probabilistic smoothing-spline clustering of series," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(4), pages 1123-1140, October.
    18. Margherita Gerolimetto & Stefano Magrini, 2022. "Weighting in clustering time series: an application to Covid-19 data," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 76(4), pages 4-12, October-D.
    19. Yuan Yan & Marc Genton, 2015. "Discussion of “Multivariate functional outlier detection” by Mia Hubert, Peter Rousseeuw and Pieter Segaert," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 245-251, July.
    20. Sara López-Pintado, 2015. "Discussion of Multivariate functional outlier detection by M. Hubert, P. Rousseeuw and P. Segaert," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 253-256, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:38:y:2021:i:3:d:10.1007_s00357-020-09382-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.