IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v35y2018i3d10.1007_s00357-018-9271-0.html
   My bibliography  Save this article

Nonlinear Time Series Clustering Based on Kolmogorov-Smirnov 2D Statistic

Author

Listed:
  • Beibei Zhang

    (Capital University of Economics and Business)

  • Rong Chen

    (Rutgers University)

Abstract

Time series clustering is to assign a set of time series into groups that share certain similarity. It has become an attractive analytic tool as many applications require such classifications. Clustering may also result in more accurate parameter estimates when a group of time series are assumed to share common models and parameters, especially for short panel time series. Many existing time series clustering methods are based on the assumption that the time series are linear. However, linearity assumptions often fail to hold. In this paper we consider the problem of clustering nonlinear time series. We propose the use of a two dimensional Kolmogorov-Smirnov statistic as a distance measure of two time series by measuring the affinity of nonlinear serial dependence structures. It is nonparametric in nature hence no model assumption are needed. The approach is illustrated with simulation studies as well as real data examples.

Suggested Citation

  • Beibei Zhang & Rong Chen, 2018. "Nonlinear Time Series Clustering Based on Kolmogorov-Smirnov 2D Statistic," Journal of Classification, Springer;The Classification Society, vol. 35(3), pages 394-421, October.
  • Handle: RePEc:spr:jclass:v:35:y:2018:i:3:d:10.1007_s00357-018-9271-0
    DOI: 10.1007/s00357-018-9271-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00357-018-9271-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00357-018-9271-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maharaj, E.A., 1994. "A Significance Test for Classifying ARMA Models," Monash Econometrics and Business Statistics Working Papers 18/94, Monash University, Department of Econometrics and Business Statistics.
    2. Caiado, Jorge & Crato, Nuno & Pena, Daniel, 2006. "A periodogram-based metric for time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2668-2684, June.
    3. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    4. Liu, Shen & Maharaj, Elizabeth Ann, 2013. "A hypothesis test using bias-adjusted AR estimators for classifying time series in small samples," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 32-49.
    5. J. C. Gower & G. J. S. Ross, 1969. "Minimum Spanning Trees and Single Linkage Cluster Analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 18(1), pages 54-64, March.
    6. C. W. Granger & E. Maasoumi & J. Racine, 2004. "A Dependence Metric for Possibly Nonlinear Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(5), pages 649-669, September.
    7. Katarina Košmelj & Vladimir Batagelj, 1990. "Cross-sectional approach for clustering time varying data," Journal of Classification, Springer;The Classification Society, vol. 7(1), pages 99-109, March.
    8. Montero, Pablo & Vilar, José A., 2014. "TSclust: An R Package for Time Series Clustering," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 62(i01).
    9. Sonia Díaz & José Vilar, 2010. "Comparing Several Parametric and Nonparametric Approaches to Time Series Clustering: A Simulation Study," Journal of Classification, Springer;The Classification Society, vol. 27(3), pages 333-362, November.
    10. Fruhwirth-Schnatter, Sylvia & Kaufmann, Sylvia, 2008. "Model-Based Clustering of Multiple Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 78-89, January.
    11. Ma, Ping & Zhong, Wenxuan, 2008. "Penalized Clustering of Large-Scale Functional Data With Multiple Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 625-636, June.
    12. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    13. Galeano, Pedro, 2001. "Multivariate analysis in vector time series," DES - Working Papers. Statistics and Econometrics. WS ws012415, Universidad Carlos III de Madrid. Departamento de Estadística.
    14. Corduas, Marcella & Piccolo, Domenico, 2008. "Time series clustering and classification by the autoregressive metric," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1860-1872, January.
    15. Vilar, J.A. & Alonso, A.M. & Vilar, J.M., 2010. "Non-linear time series clustering based on non-parametric forecast densities," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2850-2865, November.
    16. Ting Zhang, 2013. "Clustering High-Dimensional Time Series Based on Parallelism," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 577-588, June.
    17. Howell Tong & Iris Yeung, 1991. "On Tests for Self‐Exciting Threshold Autoregressive‐Type Non‐Linearity in Partially Observed Time Series," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 40(1), pages 43-62, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paloma Taltavull de La Paz, 2021. "Predicting housing prices. A long term housing price path for Spanish regions," LARES lares-2021-4dra, Latin American Real Estate Society (LARES).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sonia Díaz & José Vilar, 2010. "Comparing Several Parametric and Nonparametric Approaches to Time Series Clustering: A Simulation Study," Journal of Classification, Springer;The Classification Society, vol. 27(3), pages 333-362, November.
    2. Pierpaolo D’Urso & Livia Giovanni & Riccardo Massari & Dario Lallo, 2013. "Noise fuzzy clustering of time series by autoregressive metric," METRON, Springer;Sapienza Università di Roma, vol. 71(3), pages 217-243, November.
    3. Sipan Aslan & Ceylan Yozgatligil & Cem Iyigun, 2018. "Temporal clustering of time series via threshold autoregressive models: application to commodity prices," Annals of Operations Research, Springer, vol. 260(1), pages 51-77, January.
    4. Liu, Shen & Maharaj, Elizabeth Ann, 2013. "A hypothesis test using bias-adjusted AR estimators for classifying time series in small samples," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 32-49.
    5. Ozan Cinar & Ozlem Ilk & Cem Iyigun, 2018. "Clustering of short time-course gene expression data with dissimilar replicates," Annals of Operations Research, Springer, vol. 263(1), pages 405-428, April.
    6. Giovanni De Luca & Paola Zuccolotto, 2011. "A tail dependence-based dissimilarity measure for financial time series clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(4), pages 323-340, December.
    7. B. Lafuente-Rego & P. D’Urso & J. A. Vilar, 2020. "Robust fuzzy clustering based on quantile autocovariances," Statistical Papers, Springer, vol. 61(6), pages 2393-2448, December.
    8. Liu, Shen & Maharaj, Elizabeth Ann & Inder, Brett, 2014. "Polarization of forecast densities: A new approach to time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 345-361.
    9. E. Otranto, 2011. "Classification of Volatility in Presence of Changes in Model Parameters," Working Paper CRENoS 201113, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    10. Carolina Euán & Hernando Ombao & Joaquín Ortega, 2018. "The Hierarchical Spectral Merger Algorithm: A New Time Series Clustering Procedure," Journal of Classification, Springer;The Classification Society, vol. 35(1), pages 71-99, April.
    11. Otranto, Edoardo, 2008. "Clustering heteroskedastic time series by model-based procedures," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4685-4698, June.
    12. Vilar, J.A. & Alonso, A.M. & Vilar, J.M., 2010. "Non-linear time series clustering based on non-parametric forecast densities," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2850-2865, November.
    13. Umberto Triacca, 2016. "Measuring the Distance between Sets of ARMA Models," Econometrics, MDPI, vol. 4(3), pages 1-11, July.
    14. Corduas, Marcella & Piccolo, Domenico, 2008. "Time series clustering and classification by the autoregressive metric," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1860-1872, January.
    15. Montero, Pablo & Vilar, José A., 2014. "TSclust: An R Package for Time Series Clustering," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 62(i01).
    16. Alonso, A.M. & Berrendero, J.R. & Hernandez, A. & Justel, A., 2006. "Time series clustering based on forecast densities," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 762-776, November.
    17. John Barkoulas & Christopher Baum & Mustafa Caglayan, 1999. "Fractional monetary dynamics," Applied Economics, Taylor & Francis Journals, vol. 31(11), pages 1393-1400.
    18. Nicholas Taylor, 1998. "Precious metals and inflation," Applied Financial Economics, Taylor & Francis Journals, vol. 8(2), pages 201-210.
    19. Frankel, Jeffrey A & Schmukler, Sergio L, 2000. "Country Funds and Asymmetric Information," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 5(3), pages 177-195, July.
    20. van Amano, Robert A & Norden, Simon, 1998. "Exchange Rates and Oil Prices," Review of International Economics, Wiley Blackwell, vol. 6(4), pages 683-694, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:35:y:2018:i:3:d:10.1007_s00357-018-9271-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.