IDEAS home Printed from https://ideas.repec.org/p/cma/wpaper/0904.html
   My bibliography  Save this paper

Clustering financial time series with variance ratio statistics

Author

Listed:
  • Joao A. Bastos

    (CEMAPRE, School of Economics and Management (ISEG), Technical University of Lisbon)

  • Jorge Caiado

    (CEMAPRE, School of Economics and Management (ISEG), Technical University of Lisbon)

Abstract

This study introduces a new distance measure for clustering financial time series based on variance ratio test statistics. The proposed metric attempts to assess the level of interdependence of time series from the point of view of return predictability. Simulation results show that this metric aggregates better time series according to their serial dependence structure than a metric based on the sample autocorrelations. An empirical application of this approach to international stock market returns is presented. The results suggest that this metric discriminates reasonably well stock markets according to size and level of development. Furthermore, despite the substantial evolution of individual variance ratio statistics, the clustering pattern remains fairly stable across different time periods.

Suggested Citation

  • Joao A. Bastos & Jorge Caiado, 2009. "Clustering financial time series with variance ratio statistics," CEMAPRE Working Papers 0904, Centre for Applied Mathematics and Economics (CEMAPRE), School of Economics and Management (ISEG), Technical University of Lisbon.
  • Handle: RePEc:cma:wpaper:0904
    as

    Download full text from publisher

    File URL: http://cemapre.iseg.utl.pt/RePEc/papers/WP0904.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. G. Bonanno & F. Lillo & R. N. Mantegna, 2001. "High-frequency cross-correlation in a set of stocks," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 96-104.
    2. Kim, Jae H. & Shamsuddin, Abul, 2008. "Are Asian stock markets efficient? Evidence from new multiple variance ratio tests," Journal of Empirical Finance, Elsevier, vol. 15(3), pages 518-532, June.
    3. Chow, K. Victor & Denning, Karen C., 1993. "A simple multiple variance ratio test," Journal of Econometrics, Elsevier, vol. 58(3), pages 385-401, August.
    4. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    5. Maharaj, E.A., 1994. "A Significance Test for Classifying ARMA Models," Monash Econometrics and Business Statistics Working Papers 18/94, Monash University, Department of Econometrics and Business Statistics.
    6. Jorge Caiado & Nuno Crato, 2010. "Identifying common dynamic features in stock returns," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 797-807.
    7. Lo, Andrew W. & MacKinlay, A. Craig, 1989. "The size and power of the variance ratio test in finite samples : A Monte Carlo investigation," Journal of Econometrics, Elsevier, vol. 40(2), pages 203-238, February.
    8. Charles, Amélie & Darné, Olivier & Kim, Jae H., 2011. "Small sample properties of alternative tests for martingale difference hypothesis," Economics Letters, Elsevier, vol. 110(2), pages 151-154, February.
    9. Maharaj, Elizabeth Ann, 2002. "Comparison of non-stationary time series in the frequency domain," Computational Statistics & Data Analysis, Elsevier, vol. 40(1), pages 131-141, July.
    10. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    11. Caiado, Jorge & Crato, Nuno & Pena, Daniel, 2006. "A periodogram-based metric for time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2668-2684, June.
    12. Kim, E Han & Singal, Vijay, 2000. "Erratum [Stock Market Openings: Experience of Emerging Economies]," The Journal of Business, University of Chicago Press, vol. 73(4), October.
    13. Maharaj, Elizabeth Ann & D’Urso, Pierpaolo, 2010. "A coherence-based approach for the pattern recognition of time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3516-3537.
    14. Lim, Kian-Ping & Kim, Jae H., 2011. "Trade openness and the informational efficiency of emerging stock markets," Economic Modelling, Elsevier, vol. 28(5), pages 2228-2238, September.
    15. Graham Smith, 2009. "Martingales in European emerging stock markets: Size, liquidity and market quality," The European Journal of Finance, Taylor & Francis Journals, vol. 15(3), pages 249-262.
    16. De Gregorio, Alessandro & Maria Iacus, Stefano, 2010. "Clustering of discretely observed diffusion processes," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 598-606, February.
    17. John M. Griffin & Patrick J. Kelly & Federico Nardari, 2010. "Do Market Efficiency Measures Yield Correct Inferences? A Comparison of Developed and Emerging Markets," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 3225-3277, August.
    18. Hoque, Hafiz A.A.B. & Kim, Jae H. & Pyun, Chong Soo, 2007. "A comparison of variance ratio tests of random walk: A case of Asian emerging stock markets," International Review of Economics & Finance, Elsevier, vol. 16(4), pages 488-502.
    19. Kim, E Han & Singal, Vijay, 2000. "Stock Market Openings: Experience of Emerging Economies," The Journal of Business, University of Chicago Press, vol. 73(1), pages 25-66, January.
    20. Caiado, Jorge & Crato, Nuno & Peña, Daniel, 2009. "Comparison of time series with unequal length in the frequency domain," MPRA Paper 15310, University Library of Munich, Germany.
    21. Kim, Jae H., 2009. "Automatic variance ratio test under conditional heteroskedasticity," Finance Research Letters, Elsevier, vol. 6(3), pages 179-185, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sipan Aslan & Ceylan Yozgatligil & Cem Iyigun, 2018. "Temporal clustering of time series via threshold autoregressive models: application to commodity prices," Annals of Operations Research, Springer, vol. 260(1), pages 51-77, January.
    2. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    3. Lúcio, Francisco & Caiado, Jorge, 2022. "COVID-19 and Stock Market Volatility: A Clustering Approach for S&P 500 Industry Indices," Finance Research Letters, Elsevier, vol. 49(C).
    4. Erniel B. Barrios & Paolo Victor T. Redondo, 2024. "Nonparametric Test for Volatility in Clustered Multiple Time Series," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 861-876, February.
    5. Fabrizio Durante & Roberta Pappadà & Nicola Torelli, 2015. "Clustering of time series via non-parametric tail dependence estimation," Statistical Papers, Springer, vol. 56(3), pages 701-721, August.
    6. B. Lafuente-Rego & P. D’Urso & J. A. Vilar, 2020. "Robust fuzzy clustering based on quantile autocovariances," Statistical Papers, Springer, vol. 61(6), pages 2393-2448, December.
    7. Fabrizio Durante & Roberta Pappadà & Nicola Torelli, 2014. "Clustering of financial time series in risky scenarios," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(4), pages 359-376, December.
    8. Dias, José G. & Vermunt, Jeroen K. & Ramos, Sofia, 2015. "Clustering financial time series: New insights from an extended hidden Markov model," European Journal of Operational Research, Elsevier, vol. 243(3), pages 852-864.
    9. Anna CZAPKIEWICZ & Pawel MAJDOSZ, 2014. "Grouping Stock Markets with Time-Varying Copula-GARCH Model," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 64(2), pages 144-159, March.
    10. Abdollahi, Hooman & Junttila, Juha-Pekka & Lehkonen, Heikki, 2024. "Clustering asset markets based on volatility connectedness to political news," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 93(C).
    11. Pierpaolo D’Urso & Livia Giovanni & Riccardo Massari, 2021. "Trimmed fuzzy clustering of financial time series based on dynamic time warping," Annals of Operations Research, Springer, vol. 299(1), pages 1379-1395, April.
    12. Jorge Caiado & Nuno Crato & Pilar Poncela, 2020. "A fragmented-periodogram approach for clustering big data time series," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(1), pages 117-146, March.
    13. João A. Bastos & Jorge Caiado, 2021. "On the classification of financial data with domain agnostic features," Working Papers REM 2021/0185, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    14. Ekaterina Dorodnykh, 2013. "What Drives Stock Exchange Integration?," International Journal of Business and Economic Sciences Applied Research (IJBESAR), Democritus University of Thrace (DUTH), Kavala Campus, Greece, vol. 6(2), pages 47-79, September.
    15. Galagedera, Don U.A., 2013. "A new perspective of equity market performance," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 26(C), pages 333-357.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aneta Dyakova & Graham Smith, 2013. "The evolution of stock market predictability in Bulgaria," Applied Financial Economics, Taylor & Francis Journals, vol. 23(9), pages 805-816, May.
    2. Charles, Amélie & Darné, Olivier & Kim, Jae H., 2012. "Exchange-rate return predictability and the adaptive markets hypothesis: Evidence from major foreign exchange rates," Journal of International Money and Finance, Elsevier, vol. 31(6), pages 1607-1626.
    3. Ben Rejeb, Aymen & Boughrara, Adel, 2013. "Financial liberalization and stock markets efficiency: New evidence from emerging economies," Emerging Markets Review, Elsevier, vol. 17(C), pages 186-208.
    4. Rahman, Md. Lutfur & Lee, Doowon & Shamsuddin, Abul, 2017. "Time-varying return predictability in South Asian equity markets," International Review of Economics & Finance, Elsevier, vol. 48(C), pages 179-200.
    5. Md Lutfur Rahman & Mahbub Khan & Samuel A. Vigne & Gazi Salah Uddin, 2021. "Equity return predictability, its determinants, and profitable trading strategies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(1), pages 162-186, January.
    6. Aneta Dyakova & Graham Smith, 2013. "Bulgarian stock market relative predictability: BSE-Sofia stocks and South East European markets," Applied Financial Economics, Taylor & Francis Journals, vol. 23(15), pages 1257-1271, August.
    7. Kinga Niemczak & Graham Smith, 2013. "Middle Eastern stock markets: absolute, evolving and relative efficiency," Applied Financial Economics, Taylor & Francis Journals, vol. 23(3), pages 181-198, February.
    8. Graham Smith & Aneta Dyakova, 2014. "African Stock Markets: Efficiency and Relative Predictability," South African Journal of Economics, Economic Society of South Africa, vol. 82(2), pages 258-275, June.
    9. Navaz Naghavi & Wee-Yeap Lau, 2014. "Exploring the nexus between financial openness and informational efficiency -- does the quality of institution matter?," Applied Economics, Taylor & Francis Journals, vol. 46(7), pages 674-685, March.
    10. Amélie Charles & Olivier Darné & Jae H Kim, 2017. "Adaptive Markets Hypothesis for Islamic Stock Portfolios: Evidence from Dow Jones Size and Sector-Indices," Post-Print hal-01526483, HAL.
    11. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    12. Bley, Jorg, 2011. "Are GCC stock markets predictable?," Emerging Markets Review, Elsevier, vol. 12(3), pages 217-237, September.
    13. Charles, Amélie & Darné, Olivier & Kim, Jae H., 2017. "Adaptive markets hypothesis for Islamic stock indices: Evidence from Dow Jones size and sector-indices," International Economics, Elsevier, vol. 151(C), pages 100-112.
    14. Montagnoli, Alberto & de Vries, Frans P., 2010. "Carbon trading thickness and market efficiency," Energy Economics, Elsevier, vol. 32(6), pages 1331-1336, November.
    15. Hellström, Jörgen & Liu, Yuna & Sjögren, Tomas, 2016. "Stock exchange mergers and weak-form information efficiency: Evidence from the OMX Nordic and Baltic consolidation," Umeå Economic Studies 923, Umeå University, Department of Economics.
    16. Kim, Jae & Doucouliagos, Hristos & Stanley, T. D., 2014. "Market efficiency in Asian and Australasian stock markets: a fresh look at the evidence," Working Papers eco_2014_9, Deakin University, Department of Economics.
    17. Afees A. Salisu & Taofeek O. Ayinde, 2016. "Testing the Martingale Difference Hypothesis (MDH) with Structural Breaks: Evidence from Foreign Exchanges of Nigeria and South Africa," Journal of African Business, Taylor & Francis Journals, vol. 17(3), pages 342-359, September.
    18. Francesco Guidi & Rakesh Gupta, 2011. "Are ASEAN stock market efficient? Evidence from univariate and multivariate variance ratio tests," Discussion Papers in Finance finance:201113, Griffith University, Department of Accounting, Finance and Economics.
    19. Amélie Charles & Olivier Darné & Jae H. Kim, 2014. "Precious metals shine? A market efficiency perspective," Working Papers hal-01010516, HAL.
    20. Charles, Amélie & Darné, Olivier, 2009. "The efficiency of the crude oil markets: Evidence from variance ratio tests," Energy Policy, Elsevier, vol. 37(11), pages 4267-4272, November.

    More about this item

    Keywords

    Time series; Cluster analysis; Multidimensional scaling; Variance ratio test; International stock market;
    All these keywords.

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cma:wpaper:0904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Helena Lima (email available below). General contact details of provider: https://edirc.repec.org/data/cmutlpt.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.