IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v86y2009i1p96-105.html
   My bibliography  Save this item

Variable valve timing for fuel economy improvement in a small spark-ignition engine

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Curto-Risso, P.L. & Medina, A. & Calvo Hernández, A. & Guzmán-Vargas, L. & Angulo-Brown, F., 2011. "On cycle-to-cycle heat release variations in a simulated spark ignition heat engine," Applied Energy, Elsevier, vol. 88(5), pages 1557-1567, May.
  2. Ramasamy, D. & Zainal, Z.A. & Kadirgama, K. & Walker-Gitano Briggs, Horizon, 2016. "Effect of dissimilar valve lift on a bi-fuel CNG engine operation," Energy, Elsevier, vol. 112(C), pages 509-519.
  3. Shen, Kai & Xu, Zishun & Chen, Hong & Zhang, Zhendong, 2021. "Investigation on the EGR effect to further improve fuel economy and emissions effect of Miller cycle turbocharged engine," Energy, Elsevier, vol. 215(PB).
  4. Pili, Roberto & Romagnoli, Alessandro & Kamossa, Kai & Schuster, Andreas & Spliethoff, Hartmut & Wieland, Christoph, 2017. "Organic Rankine Cycles (ORC) for mobile applications – Economic feasibility in different transportation sectors," Applied Energy, Elsevier, vol. 204(C), pages 1188-1197.
  5. Sen, A.K. & Litak, G. & Finney, C.E.A. & Daw, C.S. & Wagner, R.M., 2010. "Analysis of heat release dynamics in an internal combustion engine using multifractals and wavelets," Applied Energy, Elsevier, vol. 87(5), pages 1736-1743, May.
  6. Payri, F. & Olmeda, P. & Martín, J. & García, A., 2011. "A complete 0D thermodynamic predictive model for direct injection diesel engines," Applied Energy, Elsevier, vol. 88(12), pages 4632-4641.
  7. Jonas Matijošius & Sergiy Rychok & Yurii Gutarevych & Yevhenii Shuba & Oleksander Syrota & Alfredas Rimkus & Dmitrij Trifonov, 2024. "Enhancing the Fuel Efficiency and Environmental Performance of Spark-Ignition Engines through Advancements in the Combined Power Regulation Method," Energies, MDPI, vol. 17(14), pages 1-28, July.
  8. Han, Dandan & E, Jiaqiang & Deng, Yuanwang & Chen, Jingwei & Leng, Erwei & Liao, Gaoliang & Zhao, Xiaohuan & Feng, Changling & Zhang, Feng, 2021. "A review of studies using hydrocarbon adsorption material for reducing hydrocarbon emissions from cold start of gasoline engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  9. Olmeda, Pablo & Martín, Jaime & Novella, Ricardo & Carreño, Ricardo, 2015. "An adapted heat transfer model for engines with tumble motion," Applied Energy, Elsevier, vol. 158(C), pages 190-202.
  10. Li, Yangtao & Khajepour, Amir & Devaud, Cécile & Liu, Kaimin, 2017. "Power and fuel economy optimizations of gasoline engines using hydraulic variable valve actuation system," Applied Energy, Elsevier, vol. 206(C), pages 577-593.
  11. Li, Yangtao & Khajepour, Amir & Devaud, Cécile, 2018. "Realization of variable Otto-Atkinson cycle using variable timing hydraulic actuated valve train for performance and efficiency improvements in unthrottled gasoline engines," Applied Energy, Elsevier, vol. 222(C), pages 199-215.
  12. Pauras Sawant & Michael Warstler & Saiful Bari, 2018. "Exhaust Tuning of an Internal Combustion Engine by the Combined Effects of Variable Exhaust Pipe Diameter and an Exhaust Valve Timing System," Energies, MDPI, vol. 11(6), pages 1-16, June.
  13. Wei, Haiqiao & Zhu, Tianyu & Shu, Gequn & Tan, Linlin & Wang, Yuesen, 2012. "Gasoline engine exhaust gas recirculation – A review," Applied Energy, Elsevier, vol. 99(C), pages 534-544.
  14. Tadros, M. & Ventura, M. & Guedes Soares, C., 2019. "Optimization procedure to minimize fuel consumption of a four-stroke marine turbocharged diesel engine," Energy, Elsevier, vol. 168(C), pages 897-908.
  15. Ashish J Chaudhari & Santosh K Hotta & Niranjan Sahoo & Vinayak Kulkarni, 2019. "Effect of vertical location of the spark plug on the performance of a raw biogas-fueled variable compression ratio spark ignition engine," Energy & Environment, , vol. 30(7), pages 1313-1338, November.
  16. Galloni, E. & Fontana, G. & Palmaccio, R., 2013. "Effects of exhaust gas recycle in a downsized gasoline engine," Applied Energy, Elsevier, vol. 105(C), pages 99-107.
  17. Deng, Banglin & Yang, Jing & Zhang, Daming & Feng, Renhua & Fu, Jianqin & Liu, Jingping & Li, Ke & Liu, Xiaoqiang, 2013. "The challenges and strategies of butanol application in conventional engines: The sensitivity study of ignition and valve timing," Applied Energy, Elsevier, vol. 108(C), pages 248-260.
  18. Khoa, Nguyen Xuan & Quach Nhu, Y. & Lim, Ocktaeck, 2020. "Estimation of parameters affected in internal exhaust residual gases recirculation and the influence of exhaust residual gas on performance and emission of a spark ignition engine," Applied Energy, Elsevier, vol. 278(C).
  19. Clenci, Adrian Constantin & Iorga-Simăn, Victor & Deligant, Michael & Podevin, Pierre & Descombes, Georges & Niculescu, Rodica, 2014. "A CFD (computational fluid dynamics) study on the effects of operating an engine with low intake valve lift at idle corresponding speed," Energy, Elsevier, vol. 71(C), pages 202-217.
  20. Osorio, Julian D. & Rivera-Alvarez, Alejandro, 2018. "Efficiency enhancement of spark-ignition engines using a Continuous Variable Valve Timing system for load control," Energy, Elsevier, vol. 161(C), pages 649-662.
  21. Adrian Clenci & Adrian Bîzîiac & Pierre Podevin & Georges Descombes & Michael Deligant & Rodica Niculescu, 2013. "Idle Operation with Low Intake Valve Lift in a Port Fuel Injected Engine," Energies, MDPI, vol. 6(6), pages 1-18, June.
  22. Benajes, Jesús & Olmeda, Pablo & Martín, Jaime & Blanco-Cavero, Diego & Warey, Alok, 2017. "Evaluation of swirl effect on the Global Energy Balance of a HSDI Diesel engine," Energy, Elsevier, vol. 122(C), pages 168-181.
  23. Zhang, Zhijin & Zhang, Haiyan & Wang, Tianyou & Jia, Ming, 2014. "Effects of tumble combined with EGR (exhaust gas recirculation) on the combustion and emissions in a spark ignition engine at part loads," Energy, Elsevier, vol. 65(C), pages 18-24.
  24. Zhao, Jinxing & Xu, Min, 2013. "Fuel economy optimization of an Atkinson cycle engine using genetic algorithm," Applied Energy, Elsevier, vol. 105(C), pages 335-348.
  25. De Bellis, Vincenzo, 2016. "Performance optimization of a spark-ignition turbocharged VVA engine under knock limited operation," Applied Energy, Elsevier, vol. 164(C), pages 162-174.
  26. Yuan, Zhipeng & Fu, Jianqin & Liu, Qi & Ma, Yinjie & Zhan, Zhangsong, 2018. "Quantitative study on influence factors of power performance of variable valve timing (VVT) engines and correction of its governing equation," Energy, Elsevier, vol. 157(C), pages 314-326.
  27. Carvalho, Irene & Baier, Thomas & Simoes, Ricardo & Silva, Arlindo, 2012. "Reducing fuel consumption through modular vehicle architectures," Applied Energy, Elsevier, vol. 93(C), pages 556-563.
  28. Bermúdez, Vicente & Luján, José Manuel & Climent, Héctor & Campos, Daniel, 2015. "Assessment of pollutants emission and aftertreatment efficiency in a GTDi engine including cooled LP-EGR system under different steady-state operating conditions," Applied Energy, Elsevier, vol. 158(C), pages 459-473.
  29. Luca Marchitto & Cinzia Tornatore & Luigi Teodosio, 2020. "Individual Cylinder Combustion Optimization to Improve Performance and Fuel Consumption of a Small Turbocharged SI Engine," Energies, MDPI, vol. 13(21), pages 1-21, October.
  30. Fontana, G. & Galloni, E., 2010. "Experimental analysis of a spark-ignition engine using exhaust gas recycle at WOT operation," Applied Energy, Elsevier, vol. 87(7), pages 2187-2193, July.
  31. Shu, Jun & Fu, Jianqin & Ren, Chengqin & Liu, Jingping & Wang, Shuqian & Feng, Sha, 2020. "Numerical investigation on flow and heat transfer processes of novel methanol cracking device for internal combustion engine exhaust heat recovery," Energy, Elsevier, vol. 195(C).
  32. Zhang, Ruiyuan & Su, Wen & Lin, Xinxing & Zhou, Naijun & Zhao, Li, 2020. "Thermodynamic analysis and parametric optimization of a novel S–CO2 power cycle for the waste heat recovery of internal combustion engines," Energy, Elsevier, vol. 209(C).
  33. Zhao, Jinxing, 2017. "Research and application of over-expansion cycle (Atkinson and Miller) engines – A review," Applied Energy, Elsevier, vol. 185(P1), pages 300-319.
  34. Teodosio, Luigi & Pirrello, Dino & Berni, Fabio & De Bellis, Vincenzo & Lanzafame, Rosario & D'Adamo, Alessandro, 2018. "Impact of intake valve strategies on fuel consumption and knock tendency of a spark ignition engine," Applied Energy, Elsevier, vol. 216(C), pages 91-104.
  35. Tripathy, Srinibas & Das, Abhimanyu & Srivastava, Dhananjay Kumar, 2020. "Electro-pneumatic variable valve actuation system for camless engine: Part II-fuel consumption improvement through un-throttled operation," Energy, Elsevier, vol. 193(C).
  36. Jehad Yamin, 2018. "Relative Change in SI Engine Power and Economy with Variable Valve Timing: Simulation and ANOVA Analysis," Modern Applied Science, Canadian Center of Science and Education, vol. 12(7), pages 113-113, July.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.