My bibliography
Save this item
Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Soufiane El Oualid & Francis Kosior & Gerhard Span & Ervin Mehmedovic & Janina Paris & Christophe Candolfi & Bertrand Lenoir, 2022. "Influence of Thermoelectric Properties and Parasitic Effects on the Electrical Power of Thermoelectric Micro-Generators," Energies, MDPI, vol. 15(10), pages 1-13, May.
- Huaibin Gao & Runchen Wang & Xiaojiang Liu & Yu Ma & Chuanwei Zhang, 2024. "Numerical Investigation of a Novel Heat Exchanger in a High-Temperature Thermoelectric Generator," Energies, MDPI, vol. 17(5), pages 1-18, February.
- Kim, Taemin & Ko, Youngsu & Lee, Younghun & Cha, Cheolung & Kim, Namsu, 2020. "Experimental analysis of flexible thermoelectric generators used for self-powered devices," Energy, Elsevier, vol. 200(C).
- Abdul Mageeth, Aqeel Mohammed & Park, SungJin & Jeong, Myunghwan & Kim, Woochul & Yu, Choongho, 2020. "Planar-type thermally chargeable supercapacitor without an effective heat sink and performance variations with layer thickness and operation conditions," Applied Energy, Elsevier, vol. 268(C).
- Yuan, Jinfeng & Zhu, Rong, 2020. "A fully self-powered wearable monitoring system with systematically optimized flexible thermoelectric generator," Applied Energy, Elsevier, vol. 271(C).
- Ni, Dan & Song, Haijun & Chen, Yuanxun & Cai, Kefeng, 2019. "Free-standing highly conducting PEDOT films for flexible thermoelectric generator," Energy, Elsevier, vol. 170(C), pages 53-61.
- Wijewardhana, K. Rohana & Shen, Tian-Zi & Song, Jang-Kun, 2017. "Energy harvesting using air bubbles on hydrophobic surfaces containing embedded charges," Applied Energy, Elsevier, vol. 206(C), pages 432-438.
- Liang, Jia & Huang, Muzhang & Zhang, Xuefei & Wan, Chunlei, 2022. "Structural design for wearable self-powered thermoelectric modules with efficient temperature difference utilization and high normalized maximum power density," Applied Energy, Elsevier, vol. 327(C).
- Lee, Gyusoup & Kim, Choong Sun & Kim, Seongho & Kim, Yong Jun & Choi, Hyeongdo & Cho, Byung Jin, 2019. "Flexible heatsink based on a phase-change material for a wearable thermoelectric generator," Energy, Elsevier, vol. 179(C), pages 12-18.
- Sargolzaeiaval, Yasaman & Ramesh, Viswanath Padmanabhan & Ozturk, Mehmet C., 2022. "A comprehensive analytical model for thermoelectric body heat harvesting incorporating the impact of human metabolism and physical activity," Applied Energy, Elsevier, vol. 324(C).
- Wang, Yancheng & Shi, Yaoguang & Mei, Deqing & Chen, Zichen, 2018. "Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer," Applied Energy, Elsevier, vol. 215(C), pages 690-698.
- Hooshmand Zaferani, Sadeq & Ghomashchi, Reza & Vashaee, Daryoosh, 2019. "Strategies for engineering phonon transport in Heusler thermoelectric compounds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 158-169.
- Karalis, George & Tzounis, Lazaros & Lambrou, Eleftherios & Gergidis, Leonidas N. & Paipetis, Alkiviadis S., 2019. "A carbon fiber thermoelectric generator integrated as a lamina within an 8-ply laminate epoxy composite: Efficient thermal energy harvesting by advanced structural materials," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Wang, Yancheng & Shi, Yaoguang & Mei, Deqing & Chen, Zichen, 2017. "Wearable thermoelectric generator for harvesting heat on the curved human wrist," Applied Energy, Elsevier, vol. 205(C), pages 710-719.
- Sijing Zhu & Zheng Fan & Baoquan Feng & Runze Shi & Zexin Jiang & Ying Peng & Jie Gao & Lei Miao & Kunihito Koumoto, 2022. "Review on Wearable Thermoelectric Generators: From Devices to Applications," Energies, MDPI, vol. 15(9), pages 1-27, May.
- Nozariasbmarz, Amin & Collins, Henry & Dsouza, Kelvin & Polash, Mobarak Hossain & Hosseini, Mahshid & Hyland, Melissa & Liu, Jie & Malhotra, Abhishek & Ortiz, Francisco Matos & Mohaddes, Farzad & Rame, 2020. "Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems," Applied Energy, Elsevier, vol. 258(C).
- Chen, Yifeng & Xie, Changjun & Li, Yang & Zhu, WenChao & Xu, Lamei & Gooi, Hoay Beng, 2023. "An improved metaheuristic-based MPPT for centralized thermoelectric generation systems under dynamic temperature conditions," Energy, Elsevier, vol. 277(C).
- Shittu, Samson & Li, Guiqiang & Akhlaghi, Yousef Golizadeh & Ma, Xiaoli & Zhao, Xudong & Ayodele, Emmanuel, 2019. "Advancements in thermoelectric generators for enhanced hybrid photovoltaic system performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 24-54.
- Lv, Jin-Ran & Ma, Jin-Lei & Dai, Lu & Yin, Tao & He, Zhi-Zhu, 2022. "A high-performance wearable thermoelectric generator with comprehensive optimization of thermal resistance and voltage boosting conversion," Applied Energy, Elsevier, vol. 312(C).
- Iezzi, Brian & Ankireddy, Krishnamraju & Twiddy, Jack & Losego, Mark D. & Jur, Jesse S., 2017. "Printed, metallic thermoelectric generators integrated with pipe insulation for powering wireless sensors," Applied Energy, Elsevier, vol. 208(C), pages 758-765.
- Yijie Liu & Xiaodong Wang & Shuaihang Hou & Zuoxu Wu & Jian Wang & Jun Mao & Qian Zhang & Zhiguo Liu & Feng Cao, 2023. "Scalable-produced 3D elastic thermoelectric network for body heat harvesting," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
- Park, Hwanjoo & Eom, Yoomin & Lee, Dongkeon & Kim, Jiyong & Kim, Hoon & Park, Gimin & Kim, Woochul, 2019. "High power output based on watch-strap-shaped body heat harvester using bulk thermoelectric materials," Energy, Elsevier, vol. 187(C).
- Liu, Shuang & Hu, Bingkun & Liu, Dawei & Li, Fu & Li, Jing-Feng & Li, Bo & Li, Liangliang & Lin, Yuan-Hua & Nan, Ce-Wen, 2018. "Micro-thermoelectric generators based on through glass pillars with high output voltage enabled by large temperature difference," Applied Energy, Elsevier, vol. 225(C), pages 600-610.
- Kong, Deyue & Zhu, Wei & Guo, Zhanpeng & Deng, Yuan, 2019. "High-performance flexible Bi2Te3 films based wearable thermoelectric generator for energy harvesting," Energy, Elsevier, vol. 175(C), pages 292-299.
- Mohamed Amine Zoui & Saïd Bentouba & John G. Stocholm & Mahmoud Bourouis, 2020. "A Review on Thermoelectric Generators: Progress and Applications," Energies, MDPI, vol. 13(14), pages 1-32, July.
- Chengshuo Xia & Daxing Zhang & Witold Pedrycz & Kangqi Fan & Yongxian Guo, 2019. "Human Body Heat Based Thermoelectric Harvester with Ultra-Low Input Power Management System for Wireless Sensors Powering," Energies, MDPI, vol. 12(20), pages 1-16, October.
- Yuan, Hengfeng & Qing, Shaowei & Ren, Shangkun & Rezania, Alireza & Rosendahl, Lasse & Wen, Xiankui & Zhong, Jingliang & Gou, Xiaolong & Tang, Shengli & E, Peng, 2023. "Modelling and optimization analysis of a novel hollow flexible-filler-based bulk thermoelectric generator for human body sensor," Energy, Elsevier, vol. 281(C).
- Sargolzaeiaval, Yasaman & Padmanabhan Ramesh, Viswanath & Neumann, Taylor V. & Misra, Veena & Vashaee, Daryoosh & Dickey, Michael D. & Öztürk, Mehmet C., 2020. "Flexible thermoelectric generators for body heat harvesting – Enhanced device performance using high thermal conductivity elastomer encapsulation on liquid metal interconnects," Applied Energy, Elsevier, vol. 262(C).
- Igor Burmistrov & Rita Khanna & Nikolay Gorshkov & Nikolay Kiselev & Denis Artyukhov & Elena Boychenko & Andrey Yudin & Yuri Konyukhov & Maksim Kravchenko & Alexander Gorokhovsky & Denis Kuznetsov, 2022. "Advances in Thermo-Electrochemical (TEC) Cell Performances for Harvesting Low-Grade Heat Energy: A Review," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
- Kim, Choong Sun & Lee, Gyu Soup & Choi, Hyeongdo & Kim, Yong Jun & Yang, Hyeong Man & Lim, Se Hwan & Lee, Sang-Gug & Cho, Byung Jin, 2018. "Structural design of a flexible thermoelectric power generator for wearable applications," Applied Energy, Elsevier, vol. 214(C), pages 131-138.
- Fan, Zeng & Zhang, Yaoyun & Pan, Lujun & Ouyang, Jianyong & Zhang, Qian, 2021. "Recent developments in flexible thermoelectrics: From materials to devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
- Kim, Sang Hoon & Min, Taesik & Choi, Jae Won & Baek, Seon Hwa & Choi, Joon-Phil & Aranas, Clodualdo, 2018. "Ternary Bi2Te3In2Te3Ga2Te3 (n-type) thermoelectric film on a flexible PET substrate for use in wearables," Energy, Elsevier, vol. 144(C), pages 607-618.
- Fan, Shifa & Gao, Yuanwen & Rezania, Alireza, 2021. "Thermoelectric performance and stress analysis on wearable thermoelectric generator under bending load," Renewable Energy, Elsevier, vol. 173(C), pages 581-595.
- Yu, Yuedong & Zhu, Wei & Wang, Yaling & Zhu, Pengcheng & Peng, Kang & Deng, Yuan, 2020. "Towards high integration and power density: Zigzag-type thin-film thermoelectric generator assisted by rapid pulse laser patterning technique," Applied Energy, Elsevier, vol. 275(C).
- Xu, Zhiheng & Li, Junqin & Tang, Xiaobin & Liu, Yunpeng & Jiang, Tongxin & Yuan, Zicheng & Liu, Kai, 2020. "Electrodeposition preparation and optimization of fan-shaped miniaturized radioisotope thermoelectric generator," Energy, Elsevier, vol. 194(C).
- Lee, Dongkeon & Park, Hwanjoo & Park, Gimin & Kim, Jiyong & Kim, Hoon & Cho, Hanki & Han, Seungwoo & Kim, Woochul, 2019. "Liquid-metal-electrode-based compact, flexible, and high-power thermoelectric device," Energy, Elsevier, vol. 188(C).