IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v225y2018icp600-610.html
   My bibliography  Save this article

Micro-thermoelectric generators based on through glass pillars with high output voltage enabled by large temperature difference

Author

Listed:
  • Liu, Shuang
  • Hu, Bingkun
  • Liu, Dawei
  • Li, Fu
  • Li, Jing-Feng
  • Li, Bo
  • Li, Liangliang
  • Lin, Yuan-Hua
  • Nan, Ce-Wen

Abstract

Micro-thermoelectric generators can convert low-grade waste heat to electrical power and have potential applications in wearable electronics, wireless sensors, medical devices and so on. It is challenging to increase the output voltage and power of the cross-plane micro-thermoelectric generators, because their thermoelectric legs are short and a large temperature difference cannot be established on the devices. In this work, we fabricate a micro-thermoelectric generator based on Bi2Te3 and Sb2Te3 through glass pillars with a length of 200 μm. These thermoelectric pillars are electrodeposited in the through holes of glass templates, and the glass templates are used to support the pillars. A temperature difference of 138 K is successfully established for the thermoelectric generator with 4 thermocouples. The maximum output voltage of the device is 40.89 mV under a temperature difference of 138 K; each thermocouple delivers a voltage of 10.22 mV. The maximum output power of the device is 19.72 μW. Both the temperature difference and the output voltage per thermocouple are the largest for the cross-plane micro-thermoelectric generators based on thin-film deposition technologies in the literature. In addition, finite element modeling is carried out to study the effects of the length and coverage rate of the thermoelectric pillars on the performance of the thermoelectric generators. Both the experimental and simulation data show that it is an effective way to enhance the temperature difference and output voltage of cross-plane micro-thermoelectric generators using through glass pillars.

Suggested Citation

  • Liu, Shuang & Hu, Bingkun & Liu, Dawei & Li, Fu & Li, Jing-Feng & Li, Bo & Li, Liangliang & Lin, Yuan-Hua & Nan, Ce-Wen, 2018. "Micro-thermoelectric generators based on through glass pillars with high output voltage enabled by large temperature difference," Applied Energy, Elsevier, vol. 225(C), pages 600-610.
  • Handle: RePEc:eee:appene:v:225:y:2018:i:c:p:600-610
    DOI: 10.1016/j.apenergy.2018.05.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918307669
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.05.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Siyang & Pei, Jun & Liu, Dawei & Bao, Liangliang & Li, Jing-Feng & Wu, Huaqiang & Li, Liangliang, 2016. "Fabrication and characterization of thermoelectric power generators with segmented legs synthesized by one-step spark plasma sintering," Energy, Elsevier, vol. 113(C), pages 35-43.
    2. Pietrzyk, Kyle & Soares, Joseph & Ohara, Brandon & Lee, Hohyun, 2016. "Power generation modeling for a wearable thermoelectric energy harvester with practical limitations," Applied Energy, Elsevier, vol. 183(C), pages 218-228.
    3. Kim, Choong Sun & Lee, Gyu Soup & Choi, Hyeongdo & Kim, Yong Jun & Yang, Hyeong Man & Lim, Se Hwan & Lee, Sang-Gug & Cho, Byung Jin, 2018. "Structural design of a flexible thermoelectric power generator for wearable applications," Applied Energy, Elsevier, vol. 214(C), pages 131-138.
    4. Lan, Song & Yang, Zhijia & Chen, Rui & Stobart, Richard, 2018. "A dynamic model for thermoelectric generator applied to vehicle waste heat recovery," Applied Energy, Elsevier, vol. 210(C), pages 327-338.
    5. Lu, Zhisong & Zhang, Huihui & Mao, Cuiping & Li, Chang Ming, 2016. "Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body," Applied Energy, Elsevier, vol. 164(C), pages 57-63.
    6. Wenyu Zhao & Zhiyuan Liu & Zhigang Sun & Qingjie Zhang & Ping Wei & Xin Mu & Hongyu Zhou & Cuncheng Li & Shifang Ma & Danqi He & Pengxia Ji & Wanting Zhu & Xiaolei Nie & Xianli Su & Xinfeng Tang & Bao, 2017. "Superparamagnetic enhancement of thermoelectric performance," Nature, Nature, vol. 549(7671), pages 247-251, September.
    7. He, Wei & Zhang, Gan & Zhang, Xingxing & Ji, Jie & Li, Guiqiang & Zhao, Xudong, 2015. "Recent development and application of thermoelectric generator and cooler," Applied Energy, Elsevier, vol. 143(C), pages 1-25.
    8. Siddique, Abu Raihan Mohammad & Mahmud, Shohel & Heyst, Bill Van, 2017. "A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 730-744.
    9. Hamid Elsheikh, Mohamed & Shnawah, Dhafer Abdulameer & Sabri, Mohd Faizul Mohd & Said, Suhana Binti Mohd & Haji Hassan, Masjuki & Ali Bashir, Mohamed Bashir & Mohamad, Mahazani, 2014. "A review on thermoelectric renewable energy: Principle parameters that affect their performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 337-355.
    10. Tan, Ming & Deng, Yuan & Hao, Yanming, 2014. "Improved thermoelectric performance of a film device induced by densely columnar Cu electrode," Energy, Elsevier, vol. 70(C), pages 143-148.
    11. Suarez, Francisco & Parekh, Dishit P. & Ladd, Collin & Vashaee, Daryoosh & Dickey, Michael D. & Öztürk, Mehmet C., 2017. "Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics," Applied Energy, Elsevier, vol. 202(C), pages 736-745.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Ziqiang & Yan, Yunfei & Zhao, Ting & Zhang, Zhien & Mikulčić, Hrvoje, 2022. "Parametric study of inserting internal spiral fins on the micro combustor performance for thermophotovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    2. Liu, Shuang & Ma, Limin & Zhen, Cheng & Li, Dan & Wang, Yishu & Jia, Qiang & Guo, Fu, 2023. "Enhancing power generation sustainability of thermoelectric pillars by suppressing diffusion at Bi-Sb-Te/Sn electrode interface using crystalline Co-P coatings," Applied Energy, Elsevier, vol. 352(C).
    3. Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2020. "Review of thermoelectric geometry and structure optimization for performance enhancement," Applied Energy, Elsevier, vol. 268(C).
    4. He, Min & Wang, Enhua & Zhang, Yuanyin & Zhang, Wen & Zhang, Fujun & Zhao, Changlu, 2020. "Performance analysis of a multilayer thermoelectric generator for exhaust heat recovery of a heavy-duty diesel engine," Applied Energy, Elsevier, vol. 274(C).
    5. Guo, Rui & Zhuo, Kai & Li, Qiang & Wang, Tao & Sang, Shengbo & Zhang, Hulin, 2023. "Triboelectric-electromagnetic hybrid generator assisted by a shape memory alloy wire for water quality monitoring and waste heat collecting," Applied Energy, Elsevier, vol. 348(C).
    6. Tian, Yu & Ren, Guang-Kun & Wei, Zhijie & Zheng, Zhe & Deng, Shunjie & Ma, Li & Li, Yuansen & Zhou, Zhifang & Chen, Xiaohong & Shi, Yan & Lin, Yuan-Hua, 2024. "Advances of thermoelectric power generation for room temperature: Applications, devices, materials and beyond," Renewable Energy, Elsevier, vol. 226(C).
    7. Matteo d’Angelo & Carmen Galassi & Nora Lecis, 2023. "Thermoelectric Materials and Applications: A Review," Energies, MDPI, vol. 16(17), pages 1-50, September.
    8. E, Jiaqiang & Luo, Bo & Han, Dandan & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Ding, Jiangjun, 2022. "A comprehensive review on performance improvement of micro energy mechanical system: Heat transfer, micro combustion and energy conversion," Energy, Elsevier, vol. 239(PE).
    9. Yu, Yuedong & Zhu, Wei & Wang, Yaling & Zhu, Pengcheng & Peng, Kang & Deng, Yuan, 2020. "Towards high integration and power density: Zigzag-type thin-film thermoelectric generator assisted by rapid pulse laser patterning technique," Applied Energy, Elsevier, vol. 275(C).
    10. Xu, Zhiheng & Li, Junqin & Tang, Xiaobin & Liu, Yunpeng & Jiang, Tongxin & Yuan, Zicheng & Liu, Kai, 2020. "Electrodeposition preparation and optimization of fan-shaped miniaturized radioisotope thermoelectric generator," Energy, Elsevier, vol. 194(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Jinfeng & Zhu, Rong, 2020. "A fully self-powered wearable monitoring system with systematically optimized flexible thermoelectric generator," Applied Energy, Elsevier, vol. 271(C).
    2. Sargolzaeiaval, Yasaman & Padmanabhan Ramesh, Viswanath & Neumann, Taylor V. & Misra, Veena & Vashaee, Daryoosh & Dickey, Michael D. & Öztürk, Mehmet C., 2020. "Flexible thermoelectric generators for body heat harvesting – Enhanced device performance using high thermal conductivity elastomer encapsulation on liquid metal interconnects," Applied Energy, Elsevier, vol. 262(C).
    3. Chengshuo Xia & Daxing Zhang & Witold Pedrycz & Kangqi Fan & Yongxian Guo, 2019. "Human Body Heat Based Thermoelectric Harvester with Ultra-Low Input Power Management System for Wireless Sensors Powering," Energies, MDPI, vol. 12(20), pages 1-16, October.
    4. Fan, Zeng & Zhang, Yaoyun & Pan, Lujun & Ouyang, Jianyong & Zhang, Qian, 2021. "Recent developments in flexible thermoelectrics: From materials to devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    5. Su, Ning & Zhu, Pengfei & Pan, Yuhui & Li, Fu & Li, Bo, 2020. "3D-printing of shape-controllable thermoelectric devices with enhanced output performance," Energy, Elsevier, vol. 195(C).
    6. Shittu, Samson & Li, Guiqiang & Akhlaghi, Yousef Golizadeh & Ma, Xiaoli & Zhao, Xudong & Ayodele, Emmanuel, 2019. "Advancements in thermoelectric generators for enhanced hybrid photovoltaic system performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 24-54.
    7. Shen, Rong & Gou, Xiaolong & Xu, Haoyu & Qiu, Kuanrong, 2017. "Dynamic performance analysis of a cascaded thermoelectric generator," Applied Energy, Elsevier, vol. 203(C), pages 808-815.
    8. He, Zhi-Zhu, 2020. "A coupled electrical-thermal impedance matching model for design optimization of thermoelectric generator," Applied Energy, Elsevier, vol. 269(C).
    9. Yuan, Zicheng & Tang, Xiaobin & Xu, Zhiheng & Li, Junqin & Chen, Wang & Liu, Kai & Liu, Yunpeng & Zhang, Zhengrong, 2018. "Screen-printed radial structure micro radioisotope thermoelectric generator," Applied Energy, Elsevier, vol. 225(C), pages 746-754.
    10. Kim, Sang Hoon & Min, Taesik & Choi, Jae Won & Baek, Seon Hwa & Choi, Joon-Phil & Aranas, Clodualdo, 2018. "Ternary Bi2Te3In2Te3Ga2Te3 (n-type) thermoelectric film on a flexible PET substrate for use in wearables," Energy, Elsevier, vol. 144(C), pages 607-618.
    11. Lee, Dongkeon & Park, Hwanjoo & Park, Gimin & Kim, Jiyong & Kim, Hoon & Cho, Hanki & Han, Seungwoo & Kim, Woochul, 2019. "Liquid-metal-electrode-based compact, flexible, and high-power thermoelectric device," Energy, Elsevier, vol. 188(C).
    12. Lee, Gyusoup & Kim, Choong Sun & Kim, Seongho & Kim, Yong Jun & Choi, Hyeongdo & Cho, Byung Jin, 2019. "Flexible heatsink based on a phase-change material for a wearable thermoelectric generator," Energy, Elsevier, vol. 179(C), pages 12-18.
    13. Kong, Deyue & Zhu, Wei & Guo, Zhanpeng & Deng, Yuan, 2019. "High-performance flexible Bi2Te3 films based wearable thermoelectric generator for energy harvesting," Energy, Elsevier, vol. 175(C), pages 292-299.
    14. Lineykin, Simon & Maslah, Kareem & Kuperman, Alon, 2020. "Manufacturer-data-only-based modeling and optimized design of thermoelectric harvesters operating at low temperature gradients," Energy, Elsevier, vol. 213(C).
    15. Sijing Zhu & Zheng Fan & Baoquan Feng & Runze Shi & Zexin Jiang & Ying Peng & Jie Gao & Lei Miao & Kunihito Koumoto, 2022. "Review on Wearable Thermoelectric Generators: From Devices to Applications," Energies, MDPI, vol. 15(9), pages 1-27, May.
    16. Twaha, Ssennoga & Zhu, Jie & Yan, Yuying & Li, Bo, 2016. "A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 698-726.
    17. Park, Hwanjoo & Eom, Yoomin & Lee, Dongkeon & Kim, Jiyong & Kim, Hoon & Park, Gimin & Kim, Woochul, 2019. "High power output based on watch-strap-shaped body heat harvester using bulk thermoelectric materials," Energy, Elsevier, vol. 187(C).
    18. Mohamed Amine Zoui & Saïd Bentouba & John G. Stocholm & Mahmoud Bourouis, 2020. "A Review on Thermoelectric Generators: Progress and Applications," Energies, MDPI, vol. 13(14), pages 1-32, July.
    19. Karalis, George & Tzounis, Lazaros & Lambrou, Eleftherios & Gergidis, Leonidas N. & Paipetis, Alkiviadis S., 2019. "A carbon fiber thermoelectric generator integrated as a lamina within an 8-ply laminate epoxy composite: Efficient thermal energy harvesting by advanced structural materials," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    20. Lv, Jin-Ran & Ma, Jin-Lei & Dai, Lu & Yin, Tao & He, Zhi-Zhu, 2022. "A high-performance wearable thermoelectric generator with comprehensive optimization of thermal resistance and voltage boosting conversion," Applied Energy, Elsevier, vol. 312(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:225:y:2018:i:c:p:600-610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.