Modelling and optimization analysis of a novel hollow flexible-filler-based bulk thermoelectric generator for human body sensor
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.128290
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Nozariasbmarz, Amin & Collins, Henry & Dsouza, Kelvin & Polash, Mobarak Hossain & Hosseini, Mahshid & Hyland, Melissa & Liu, Jie & Malhotra, Abhishek & Ortiz, Francisco Matos & Mohaddes, Farzad & Rame, 2020. "Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems," Applied Energy, Elsevier, vol. 258(C).
- Högblom, Olle & Andersson, Ronnie, 2016. "A simulation framework for prediction of thermoelectric generator system performance," Applied Energy, Elsevier, vol. 180(C), pages 472-482.
- Lv, Jin-Ran & Ma, Jin-Lei & Dai, Lu & Yin, Tao & He, Zhi-Zhu, 2022. "A high-performance wearable thermoelectric generator with comprehensive optimization of thermal resistance and voltage boosting conversion," Applied Energy, Elsevier, vol. 312(C).
- Wang, Yancheng & Shi, Yaoguang & Mei, Deqing & Chen, Zichen, 2018. "Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer," Applied Energy, Elsevier, vol. 215(C), pages 690-698.
- Sargolzaeiaval, Yasaman & Padmanabhan Ramesh, Viswanath & Neumann, Taylor V. & Misra, Veena & Vashaee, Daryoosh & Dickey, Michael D. & Öztürk, Mehmet C., 2020. "Flexible thermoelectric generators for body heat harvesting – Enhanced device performance using high thermal conductivity elastomer encapsulation on liquid metal interconnects," Applied Energy, Elsevier, vol. 262(C).
- Xiong, Bing & Chen, Lingen & Meng, Fankai & Sun, Fengrui, 2014. "Modeling and performance analysis of a two-stage thermoelectric energy harvesting system from blast furnace slag water waste heat," Energy, Elsevier, vol. 77(C), pages 562-569.
- Lee, Gyusoup & Kim, Choong Sun & Kim, Seongho & Kim, Yong Jun & Choi, Hyeongdo & Cho, Byung Jin, 2019. "Flexible heatsink based on a phase-change material for a wearable thermoelectric generator," Energy, Elsevier, vol. 179(C), pages 12-18.
- Wang, Yancheng & Shi, Yaoguang & Mei, Deqing & Chen, Zichen, 2017. "Wearable thermoelectric generator for harvesting heat on the curved human wrist," Applied Energy, Elsevier, vol. 205(C), pages 710-719.
- Lu, Zhisong & Zhang, Huihui & Mao, Cuiping & Li, Chang Ming, 2016. "Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body," Applied Energy, Elsevier, vol. 164(C), pages 57-63.
- Byeongmoon Lee & Hyeon Cho & Kyung Tae Park & Jin-Sang Kim & Min Park & Heesuk Kim & Yongtaek Hong & Seungjun Chung, 2020. "High-performance compliant thermoelectric generators with magnetically self-assembled soft heat conductors for self-powered wearable electronics," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
- Madan, Deepa & Wang, Zuoqian & Wright, Paul K. & Evans, James W., 2015. "Printed flexible thermoelectric generators for use on low levels of waste heat," Applied Energy, Elsevier, vol. 156(C), pages 587-592.
- Nozariasbmarz, Amin & Dycus, J. Houston & Cabral, Matthew J. & Flack, Chloe M. & Krasinski, Jerzy S. & LeBeau, James M. & Vashaee, Daryoosh, 2021. "Efficient self-powered wearable electronic systems enabled by microwave processed thermoelectric materials," Applied Energy, Elsevier, vol. 283(C).
- Suarez, Francisco & Parekh, Dishit P. & Ladd, Collin & Vashaee, Daryoosh & Dickey, Michael D. & Öztürk, Mehmet C., 2017. "Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics," Applied Energy, Elsevier, vol. 202(C), pages 736-745.
- Yuan, Jinfeng & Zhu, Rong, 2020. "A fully self-powered wearable monitoring system with systematically optimized flexible thermoelectric generator," Applied Energy, Elsevier, vol. 271(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lv, Jin-Ran & Ma, Jin-Lei & Dai, Lu & Yin, Tao & He, Zhi-Zhu, 2022. "A high-performance wearable thermoelectric generator with comprehensive optimization of thermal resistance and voltage boosting conversion," Applied Energy, Elsevier, vol. 312(C).
- Sijing Zhu & Zheng Fan & Baoquan Feng & Runze Shi & Zexin Jiang & Ying Peng & Jie Gao & Lei Miao & Kunihito Koumoto, 2022. "Review on Wearable Thermoelectric Generators: From Devices to Applications," Energies, MDPI, vol. 15(9), pages 1-27, May.
- Yuan, Jinfeng & Zhu, Rong, 2020. "A fully self-powered wearable monitoring system with systematically optimized flexible thermoelectric generator," Applied Energy, Elsevier, vol. 271(C).
- Fan, Zeng & Zhang, Yaoyun & Pan, Lujun & Ouyang, Jianyong & Zhang, Qian, 2021. "Recent developments in flexible thermoelectrics: From materials to devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
- Wei, Haoxiang & Zhang, Jian & Han, Yang & Xu, Dongyan, 2022. "Soft-covered wearable thermoelectric device for body heat harvesting and on-skin cooling," Applied Energy, Elsevier, vol. 326(C).
- Chetty, Raju & Nagase, Kazuo & Aihara, Makoto & Jood, Priyanka & Takazawa, Hiroyuki & Ohta, Michihiro & Yamamoto, Atsushi, 2020. "Mechanically durable thermoelectric power generation module made of Ni-based alloy as a reference for reliable testing," Applied Energy, Elsevier, vol. 260(C).
- Sargolzaeiaval, Yasaman & Ramesh, Viswanath Padmanabhan & Ozturk, Mehmet C., 2022. "A comprehensive analytical model for thermoelectric body heat harvesting incorporating the impact of human metabolism and physical activity," Applied Energy, Elsevier, vol. 324(C).
- Wang, Yancheng & Shi, Yaoguang & Mei, Deqing & Chen, Zichen, 2018. "Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer," Applied Energy, Elsevier, vol. 215(C), pages 690-698.
- Mai, Van-Phung & Yang, Ruey-Jen, 2020. "Boosting power generation from salinity gradient on high-density nanoporous membrane using thermal effect," Applied Energy, Elsevier, vol. 274(C).
- Yuan, Zicheng & Tang, Xiaobin & Xu, Zhiheng & Li, Junqin & Chen, Wang & Liu, Kai & Liu, Yunpeng & Zhang, Zhengrong, 2018. "Screen-printed radial structure micro radioisotope thermoelectric generator," Applied Energy, Elsevier, vol. 225(C), pages 746-754.
- Yijie Liu & Xiaodong Wang & Shuaihang Hou & Zuoxu Wu & Jian Wang & Jun Mao & Qian Zhang & Zhiguo Liu & Feng Cao, 2023. "Scalable-produced 3D elastic thermoelectric network for body heat harvesting," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
- Yu, Yuedong & Zhu, Wei & Wang, Yaling & Zhu, Pengcheng & Peng, Kang & Deng, Yuan, 2020. "Towards high integration and power density: Zigzag-type thin-film thermoelectric generator assisted by rapid pulse laser patterning technique," Applied Energy, Elsevier, vol. 275(C).
- Sargolzaeiaval, Yasaman & Padmanabhan Ramesh, Viswanath & Neumann, Taylor V. & Misra, Veena & Vashaee, Daryoosh & Dickey, Michael D. & Öztürk, Mehmet C., 2020. "Flexible thermoelectric generators for body heat harvesting – Enhanced device performance using high thermal conductivity elastomer encapsulation on liquid metal interconnects," Applied Energy, Elsevier, vol. 262(C).
- Liang, Jia & Huang, Muzhang & Zhang, Xuefei & Wan, Chunlei, 2022. "Structural design for wearable self-powered thermoelectric modules with efficient temperature difference utilization and high normalized maximum power density," Applied Energy, Elsevier, vol. 327(C).
- Kong, Deyue & Zhu, Wei & Guo, Zhanpeng & Deng, Yuan, 2019. "High-performance flexible Bi2Te3 films based wearable thermoelectric generator for energy harvesting," Energy, Elsevier, vol. 175(C), pages 292-299.
- Lineykin, Simon & Maslah, Kareem & Kuperman, Alon, 2020. "Manufacturer-data-only-based modeling and optimized design of thermoelectric harvesters operating at low temperature gradients," Energy, Elsevier, vol. 213(C).
- Zhang, Aibing & Pang, Dandan & Wang, Baolin & Wang, Ji, 2023. "Dynamic responses of wearable thermoelectric generators used for skin waste heat harvesting," Energy, Elsevier, vol. 262(PB).
- Wang, Yancheng & Shi, Yaoguang & Mei, Deqing & Chen, Zichen, 2017. "Wearable thermoelectric generator for harvesting heat on the curved human wrist," Applied Energy, Elsevier, vol. 205(C), pages 710-719.
- Karalis, George & Tzounis, Lazaros & Lambrou, Eleftherios & Gergidis, Leonidas N. & Paipetis, Alkiviadis S., 2019. "A carbon fiber thermoelectric generator integrated as a lamina within an 8-ply laminate epoxy composite: Efficient thermal energy harvesting by advanced structural materials," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Nozariasbmarz, Amin & Collins, Henry & Dsouza, Kelvin & Polash, Mobarak Hossain & Hosseini, Mahshid & Hyland, Melissa & Liu, Jie & Malhotra, Abhishek & Ortiz, Francisco Matos & Mohaddes, Farzad & Rame, 2020. "Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems," Applied Energy, Elsevier, vol. 258(C).
More about this item
Keywords
Flexible thermoelectric generator; Polydimethylsiloxane; Hollow design; Multiphysics field coupled modelling; Body sensor;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:281:y:2023:i:c:s0360544223016845. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.