IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v170y2019icp53-61.html
   My bibliography  Save this article

Free-standing highly conducting PEDOT films for flexible thermoelectric generator

Author

Listed:
  • Ni, Dan
  • Song, Haijun
  • Chen, Yuanxun
  • Cai, Kefeng

Abstract

Recently, organic thermoelectric (TE) materials especially conducting polymers have attracted increasing attention. In this work, we successfully synthesized ultrafine poly (3,4-ethylenedioxythiophene) (PEDOT) nanowires (NWs) (∼10 nm) by a simple self-assembled micellar soft-template method and then obtain highly flexible free-standing PEDOT NW films by vacuum-assisted filtration. The films are with very high electrical conductivity (∼1340 S cm−1). After being treated with 6 M H2SO4 and then with 1 M NaOH at room temperature, the film shows an enhanced power factor of 46.51 μW m−1K−2 (Seebeck coefficient of 25.5 μV K−1, electrical conductivity of 715.3 S cm−1), which increases by 54% compared with that of the pristine film. To the best of our knowledge, it outperforms the TE performance of all reported one dimensional conducting polymer-based films. In addition, the TE performance of the film almost remains unchanged even after being bent for 200 times, indicating excellent flexibility. A flexible TE prototype composed of six strips (7 mm × 30 mm) of the as-prepared PEDOT NW films connected in series shows an output power of 157.2 nW at a temperature difference of 51.6 K. The free-standing PEDOT NW films show promise to a new generation of wearable TE devices.

Suggested Citation

  • Ni, Dan & Song, Haijun & Chen, Yuanxun & Cai, Kefeng, 2019. "Free-standing highly conducting PEDOT films for flexible thermoelectric generator," Energy, Elsevier, vol. 170(C), pages 53-61.
  • Handle: RePEc:eee:energy:v:170:y:2019:i:c:p:53-61
    DOI: 10.1016/j.energy.2018.12.124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218324964
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.12.124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wenyu Zhao & Ping Wei & Qingjie Zhang & Hua Peng & Wanting Zhu & Dingguo Tang & Jian Yu & Hongyu Zhou & Zhiyuan Liu & Xin Mu & Danqi He & Jichao Li & Chunlei Wang & Xinfeng Tang & Jihui Yang, 2015. "Multi-localization transport behaviour in bulk thermoelectric materials," Nature Communications, Nature, vol. 6(1), pages 1-7, May.
    2. Wenyu Zhao & Zhiyuan Liu & Zhigang Sun & Qingjie Zhang & Ping Wei & Xin Mu & Hongyu Zhou & Cuncheng Li & Shifang Ma & Danqi He & Pengxia Ji & Wanting Zhu & Xiaolei Nie & Xianli Su & Xinfeng Tang & Bao, 2017. "Superparamagnetic enhancement of thermoelectric performance," Nature, Nature, vol. 549(7671), pages 247-251, September.
    3. Song, Haijun & Cai, Kefeng, 2017. "Preparation and properties of PEDOT:PSS/Te nanorod composite films for flexible thermoelectric power generator," Energy, Elsevier, vol. 125(C), pages 519-525.
    4. Yanzhong Pei & Xiaoya Shi & Aaron LaLonde & Heng Wang & Lidong Chen & G. Jeffrey Snyder, 2011. "Convergence of electronic bands for high performance bulk thermoelectrics," Nature, Nature, vol. 473(7345), pages 66-69, May.
    5. Kanishka Biswas & Jiaqing He & Ivan D. Blum & Chun-I Wu & Timothy P. Hogan & David N. Seidman & Vinayak P. Dravid & Mercouri G. Kanatzidis, 2012. "High-performance bulk thermoelectrics with all-scale hierarchical architectures," Nature, Nature, vol. 489(7416), pages 414-418, September.
    6. Suarez, Francisco & Parekh, Dishit P. & Ladd, Collin & Vashaee, Daryoosh & Dickey, Michael D. & Öztürk, Mehmet C., 2017. "Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics," Applied Energy, Elsevier, vol. 202(C), pages 736-745.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan, Jinfeng & Zhu, Rong, 2020. "A fully self-powered wearable monitoring system with systematically optimized flexible thermoelectric generator," Applied Energy, Elsevier, vol. 271(C).
    2. Cui, Y.J. & Wang, B.L. & Wang, K.F., 2021. "Energy conversion performance optimization and strength evaluation of a wearable thermoelectric generator made of a thermoelectric layer on a flexible substrate," Energy, Elsevier, vol. 229(C).
    3. Lv, Jin-Ran & Ma, Jin-Lei & Dai, Lu & Yin, Tao & He, Zhi-Zhu, 2022. "A high-performance wearable thermoelectric generator with comprehensive optimization of thermal resistance and voltage boosting conversion," Applied Energy, Elsevier, vol. 312(C).
    4. Bharti, Meetu & Jha, P. & Singh, Ajay & Chauhan, A.K. & Misra, Shantanu & Yamazoe, Masato & Debnath, A.K. & Marumoto, Kazuhiro & Muthe, K.P. & Aswal, D.K., 2019. "Scalable free-standing polypyrrole films for wrist-band type flexible thermoelectric power generator," Energy, Elsevier, vol. 176(C), pages 853-860.
    5. Abdelkader Rjafallah & Daniel Tudor Cotfas & Petru Adrian Cotfas, 2022. "Legs Geometry Influence on the Performance of the Thermoelectric Module," Sustainability, MDPI, vol. 14(23), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing-Wei Li & Zhijia Han & Jincheng Yu & Hua-Lu Zhuang & Haihua Hu & Bin Su & Hezhang Li & Yilin Jiang & Lu Chen & Weishu Liu & Qiang Zheng & Jing-Feng Li, 2023. "Wide-temperature-range thermoelectric n-type Mg3(Sb,Bi)2 with high average and peak zT values," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Fan, Zeng & Zhang, Yaoyun & Pan, Lujun & Ouyang, Jianyong & Zhang, Qian, 2021. "Recent developments in flexible thermoelectrics: From materials to devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Zihang Liu & Weihong Gao & Hironori Oshima & Kazuo Nagase & Chul-Ho Lee & Takao Mori, 2022. "Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Yingcai Zhu & Dongyang Wang & Tao Hong & Lei Hu & Toshiaki Ina & Shaoping Zhan & Bingchao Qin & Haonan Shi & Lizhong Su & Xiang Gao & Li-Dong Zhao, 2022. "Multiple valence bands convergence and strong phonon scattering lead to high thermoelectric performance in p-type PbSe," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Yilin Jiang & Jinfeng Dong & Hua-Lu Zhuang & Jincheng Yu & Bin Su & Hezhang Li & Jun Pei & Fu-Hua Sun & Min Zhou & Haihua Hu & Jing-Wei Li & Zhanran Han & Bo-Ping Zhang & Takao Mori & Jing-Feng Li, 2022. "Evolution of defect structures leading to high ZT in GeTe-based thermoelectric materials," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Liu, Shuang & Hu, Bingkun & Liu, Dawei & Li, Fu & Li, Jing-Feng & Li, Bo & Li, Liangliang & Lin, Yuan-Hua & Nan, Ce-Wen, 2018. "Micro-thermoelectric generators based on through glass pillars with high output voltage enabled by large temperature difference," Applied Energy, Elsevier, vol. 225(C), pages 600-610.
    7. Decheng An & Senhao Zhang & Xin Zhai & Wutao Yang & Riga Wu & Huaide Zhang & Wenhao Fan & Wenxian Wang & Shaoping Chen & Oana Cojocaru-Mirédin & Xian-Ming Zhang & Matthias Wuttig & Yuan Yu, 2024. "Metavalently bonded tellurides: the essence of improved thermoelectric performance in elemental Te," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Zhifang Zhou & Yi Huang & Bin Wei & Yueyang Yang & Dehong Yu & Yunpeng Zheng & Dongsheng He & Wenyu Zhang & Mingchu Zou & Jin-Le Lan & Jiaqing He & Ce-Wen Nan & Yuan-Hua Lin, 2023. "Compositing effects for high thermoelectric performance of Cu2Se-based materials," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Yaru Gong & Wei Dou & Bochen Lu & Xuemei Zhang & He Zhu & Pan Ying & Qingtang Zhang & Yuqi Liu & Yanan Li & Xinqi Huang & Muhammad Faisal Iqbal & Shihua Zhang & Di Li & Yongsheng Zhang & Haijun Wu & G, 2024. "Divacancy and resonance level enables high thermoelectric performance in n-type SnSe polycrystals," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Eom, Yoomin & Wijethunge, Dimuthu & Park, Hwanjoo & Park, Sang Hyun & Kim, Woochul, 2017. "Flexible thermoelectric power generation system based on rigid inorganic bulk materials," Applied Energy, Elsevier, vol. 206(C), pages 649-656.
    11. Kevin Bethke & Virgil Andrei & Klaus Rademann, 2016. "Decreasing the Effective Thermal Conductivity in Glass Supported Thermoelectric Layers," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-19, March.
    12. Hangtian Zhu & Wenjie Li & Amin Nozariasbmarz & Na Liu & Yu Zhang & Shashank Priya & Bed Poudel, 2023. "Half-Heusler alloys as emerging high power density thermoelectric cooling materials," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Yong Yu & Xiao Xu & Yan Wang & Baohai Jia & Shan Huang & Xiaobin Qiang & Bin Zhu & Peijian Lin & Binbin Jiang & Shixuan Liu & Xia Qi & Kefan Pan & Di Wu & Haizhou Lu & Michel Bosman & Stephen J. Penny, 2022. "Tunable quantum gaps to decouple carrier and phonon transport leading to high-performance thermoelectrics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Bai, Shengxi & Liu, Chunhua, 2021. "Overview of energy harvesting and emission reduction technologies in hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    15. Song Lv & Zuoqin Qian & Dengyun Hu & Xiaoyuan Li & Wei He, 2020. "A Comprehensive Review of Strategies and Approaches for Enhancing the Performance of Thermoelectric Module," Energies, MDPI, vol. 13(12), pages 1-24, June.
    16. Dianta Ginting & Chan-Chieh Lin & Jong-Soo Rhyee, 2019. "Synergetic Approach for Superior Thermoelectric Performance in PbTe-PbSe-PbS Quaternary Alloys and Composites," Energies, MDPI, vol. 13(1), pages 1-29, December.
    17. Bingchao Qin & Dongyang Wang & Tao Hong & Yuping Wang & Dongrui Liu & Ziyuan Wang & Xiang Gao & Zhen-Hua Ge & Li-Dong Zhao, 2023. "High thermoelectric efficiency realized in SnSe crystals via structural modulation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Nie, Xianhua & Xue, Juan & Zhao, Li & Deng, Shuai & Xiong, Hanping, 2024. "New insight of thermodynamic cycle in thermoelectric power generation analyses: Literature review and perspectives," Energy, Elsevier, vol. 292(C).
    19. Terry Hendricks & Thierry Caillat & Takao Mori, 2022. "Keynote Review of Latest Advances in Thermoelectric Generation Materials, Devices, and Technologies 2022," Energies, MDPI, vol. 15(19), pages 1-35, October.
    20. Romo-De-La-Cruz, Cesar-Octavio & Chen, Yun & Liang, Liang & Paredes-Navia, Sergio A. & Wong-Ng, Winnie K. & Song, Xueyan, 2023. "Entering new era of thermoelectric oxide ceramics with high power factor through designing grain boundaries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:170:y:2019:i:c:p:53-61. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.