Energy harvesting using air bubbles on hydrophobic surfaces containing embedded charges
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2017.08.211
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Orrego, Santiago & Shoele, Kourosh & Ruas, Andre & Doran, Kyle & Caggiano, Brett & Mittal, Rajat & Kang, Sung Hoon, 2017. "Harvesting ambient wind energy with an inverted piezoelectric flag," Applied Energy, Elsevier, vol. 194(C), pages 212-222.
- Tom Krupenkin & J. Ashley Taylor, 2011. "Reverse electrowetting as a new approach to high-power energy harvesting," Nature Communications, Nature, vol. 2(1), pages 1-8, September.
- Jung, Inki & Shin, Youn-Hwan & Kim, Sangtae & Choi, Ji-young & Kang, Chong-Yun, 2017. "Flexible piezoelectric polymer-based energy harvesting system for roadway applications," Applied Energy, Elsevier, vol. 197(C), pages 222-229.
- Jong Kyun Moon & Jaeki Jeong & Dongyun Lee & Hyuk Kyu Pak, 2013. "Electrical power generation by mechanically modulating electrical double layers," Nature Communications, Nature, vol. 4(1), pages 1-6, June.
- Wu, Xuan & Li, Guangyong & Lee, Dong-Weon, 2016. "A novel energy conversion method based on hydrogel material for self-powered sensor system applications," Applied Energy, Elsevier, vol. 173(C), pages 103-110.
- Suarez, Francisco & Parekh, Dishit P. & Ladd, Collin & Vashaee, Daryoosh & Dickey, Michael D. & Öztürk, Mehmet C., 2017. "Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics," Applied Energy, Elsevier, vol. 202(C), pages 736-745.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Guan, Zhibin & Li, Ping & Wen, Yumei & Du, Yu & Han, Tao & Ji, Xiaojun, 2021. "Efficient underwater energy harvesting from bubble-driven pipe flow," Applied Energy, Elsevier, vol. 295(C).
- Wijewardhana, K. Rohana & Ekanayaka, Thilini K. & Jayaweera, E.N. & Shahzad, Amir & Song, Jang-Kun, 2018. "Integration of multiple bubble motion active transducers for improving energy-harvesting efficiency," Energy, Elsevier, vol. 160(C), pages 648-653.
- Guan, Zhibin & Li, Ping & Wen, Yumei & Du, Yu & Wang, Yao, 2022. "Efficient bubble energy harvesting by promoting pressure potential energy release using helix flow channel," Applied Energy, Elsevier, vol. 328(C).
- Helseth, L.E., 2021. "Harvesting energy from light and water droplets by covering photovoltaic cells with transparent polymers," Applied Energy, Elsevier, vol. 300(C).
- Guan, Zhibin & Li, Ping & Wen, Yumei & Du, Yu & Wang, Guoda, 2023. "Bubble energy harvesting suitable for weak gas sources using bubble stream release scheme," Applied Energy, Elsevier, vol. 349(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Song, Gyeong Ju & Kim, Kyung-Bum & Cho, Jae Yong & Woo, Min Sik & Ahn, Jung Hwan & Eom, Jong Hyuk & Ko, Sung Min & Yang, Chan Ho & Hong, Seong Do & Jeong, Se Yeong & Hwang, Won Seop & Woo, Sang Bum & , 2019. "Performance of a speed bump piezoelectric energy harvester for an automatic cellphone charging system," Applied Energy, Elsevier, vol. 247(C), pages 221-227.
- Wu, Xuan & Li, Guangyong & Lee, Dong-Weon, 2016. "A novel energy conversion method based on hydrogel material for self-powered sensor system applications," Applied Energy, Elsevier, vol. 173(C), pages 103-110.
- Abdelmoula, H. & Sharpes, N. & Abdelkefi, A. & Lee, H. & Priya, S., 2017. "Low-frequency Zigzag energy harvesters operating in torsion-dominant mode," Applied Energy, Elsevier, vol. 204(C), pages 413-419.
- Hua-Ju Shih, 2019. "An Analysis Model Combining Gamma-Type Stirling Engine and Power Converter," Energies, MDPI, vol. 12(7), pages 1-18, April.
- Zhang, Yulong & Wang, Tianyang & Luo, Anxin & Hu, Yushen & Li, Xinxin & Wang, Fei, 2018. "Micro electrostatic energy harvester with both broad bandwidth and high normalized power density," Applied Energy, Elsevier, vol. 212(C), pages 362-371.
- Hwang, Wonseop & Kim, Kyung-Bum & Cho, Jae Yong & Yang, Chan Ho & Kim, Jung Hun & Song, Gyeong Ju & Song, Yewon & Jeon, Deok Hwan & Ahn, Jung Hwan & Do Hong, Seong & Kim, Jihoon & Lee, Tae Hee & Choi,, 2019. "Watts-level road-compatible piezoelectric energy harvester for a self-powered temperature monitoring system on an actual roadway," Applied Energy, Elsevier, vol. 243(C), pages 313-320.
- Wang, Chaohui & Zhao, Jianxiong & Li, Qiang & Li, Yanwei, 2018. "Optimization design and experimental investigation of piezoelectric energy harvesting devices for pavement," Applied Energy, Elsevier, vol. 229(C), pages 18-30.
- Li, Zhongjie & Yang, Zhengbao & Naguib, Hani E., 2020. "Introducing revolute joints into piezoelectric energy harvesters," Energy, Elsevier, vol. 192(C).
- Yurchenko, D. & Lai, Z.H. & Thomson, G. & Val, D.V. & Bobryk, R.V., 2017. "Parametric study of a novel vibro-impact energy harvesting system with dielectric elastomer," Applied Energy, Elsevier, vol. 208(C), pages 456-470.
- Johar, Muhammad Ali & Kang, Jin-Ho & Hassan, Mostafa Afifi & Ryu, Sang-Wan, 2018. "A scalable, flexible and transparent GaN based heterojunction piezoelectric nanogenerator for bending, air-flow and vibration energy harvesting," Applied Energy, Elsevier, vol. 222(C), pages 781-789.
- Wang, Chaohui & Wang, Shuai & Gao, Zhiwei & Wang, Xingju, 2019. "Applicability evaluation of embedded piezoelectric energy harvester applied in pavement structures," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Zhao, Liya & Yang, Yaowen, 2018. "An impact-based broadband aeroelastic energy harvester for concurrent wind and base vibration energy harvesting," Applied Energy, Elsevier, vol. 212(C), pages 233-243.
- Zhao, Dong & Liu, Ying, 2020. "A prototype for light-electric harvester based on light sensitive liquid crystal elastomer cantilever," Energy, Elsevier, vol. 198(C).
- Wang, Yancheng & Shi, Yaoguang & Mei, Deqing & Chen, Zichen, 2018. "Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer," Applied Energy, Elsevier, vol. 215(C), pages 690-698.
- Bogdan Dziadak & Mariusz Kucharek & Jacek Starzyński, 2022. "Powering the WSN Node for Monitoring Rail Car Parameters, Using a Piezoelectric Energy Harvester," Energies, MDPI, vol. 15(5), pages 1-18, February.
- He, Lipeng & Liu, Lei & Zhou, Jianwen & Yu, Gang & Sun, Baoyu & Cheng, Guangming, 2022. "Design and analysis of a double-acting nonlinear wideband piezoelectric energy harvester under plucking and collision," Energy, Elsevier, vol. 239(PD).
- Latif, Usman & Dowell, Earl H. & Uddin, E. & Younis, M.Y. & Frisch, H.M., 2024. "Comparative analysis of flag based energy harvester undergoing extraneous induced excitation," Energy, Elsevier, vol. 295(C).
- Zhang, L.B. & Dai, H.L. & Abdelkefi, A. & Wang, L., 2019. "Experimental investigation of aerodynamic energy harvester with different interference cylinder cross-sections," Energy, Elsevier, vol. 167(C), pages 970-981.
- Cho, Jae Yong & Kim, Kyung-Bum & Hwang, Won Seop & Yang, Chan Ho & Ahn, Jung Hwan & Hong, Seong Do & Jeon, Deok Hwan & Song, Gyeong Ju & Ryu, Chul Hee & Woo, Sang Bum & Kim, Jihoon & Lee, Tae Hee & Ch, 2019. "A multifunctional road-compatible piezoelectric energy harvester for autonomous driver-assist LED indicators with a self-monitoring system," Applied Energy, Elsevier, vol. 242(C), pages 294-301.
- Tan, Ting & Yan, Zhimiao & Zou, Hongxiang & Ma, Kejing & Liu, Fengrui & Zhao, Linchuan & Peng, Zhike & Zhang, Wenming, 2019. "Renewable energy harvesting and absorbing via multi-scale metamaterial systems for Internet of things," Applied Energy, Elsevier, vol. 254(C).
More about this item
Keywords
Energy harvesting; Air bubbles; Triboelectricity; EDL modulation; Embedded charges;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:206:y:2017:i:c:p:432-438. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.