My bibliography
Save this item
Melting enhancement in triplex-tube latent heat energy storage system using nanoparticles-metal foam combination
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Shuai & Feng, Daili & Shi, Lei & Wang, Li & Jin, Yingai & Tian, Limei & Li, Ziyuan & Wang, Guoyong & Zhao, Lei & Yan, Yuying, 2021. "A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Xinguo Sun & Jasim M. Mahdi & Hayder I. Mohammed & Hasan Sh. Majdi & Wang Zixiong & Pouyan Talebizadehsardari, 2021. "Solidification Enhancement in a Triple-Tube Latent Heat Energy Storage System Using Twisted Fins," Energies, MDPI, vol. 14(21), pages 1-23, November.
- Ge, Ruihuan & Li, Qi & Li, Chuan & Liu, Qing, 2022. "Evaluation of different melting performance enhancement structures in a shell-and-tube latent heat thermal energy storage system," Renewable Energy, Elsevier, vol. 187(C), pages 829-843.
- Cao, Xiaoling & Zhang, Nan & Yuan, Yanping & Luo, Xiaolong, 2020. "Thermal performance of triplex-tube latent heat storage exchanger: simultaneous heat storage and hot water supply via condensation heat recovery," Renewable Energy, Elsevier, vol. 157(C), pages 616-625.
- Mohammad Ghalambaz & Amir Hossein Eisapour & Hayder I. Mohammed & Mohammad S. Islam & Obai Younis & Pouyan Talebizadeh Sardari & Wahiba Yaïci, 2021. "Impact of Tube Bundle Placement on the Thermal Charging of a Latent Heat Storage Unit," Energies, MDPI, vol. 14(5), pages 1-14, February.
- Yang, Xiaohu & Yu, Jiabang & Guo, Zengxu & Jin, Liwen & He, Ya-Ling, 2019. "Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube," Applied Energy, Elsevier, vol. 239(C), pages 142-156.
- Kumar, Ashish & Saha, Sandip K., 2020. "Experimental and numerical study of latent heat thermal energy storage with high porosity metal matrix under intermittent heat loads," Applied Energy, Elsevier, vol. 263(C).
- Sardari, Pouyan Talebizadeh & Giddings, Donald & Grant, David & Gillott, Mark & Walker, Gavin S., 2020. "Discharge of a composite metal foam/phase change material to air heat exchanger for a domestic thermal storage unit," Renewable Energy, Elsevier, vol. 148(C), pages 987-1001.
- Choi, Sung Ho & Sohn, Dong Kee & Ko, Han Seo, 2021. "Performance enhancement of latent heat thermal energy storage by bubble-driven flow," Applied Energy, Elsevier, vol. 302(C).
- Aurang Zaib & Abdur Rehman Mazhar & Shahid Aziz & Tariq Talha & Dong-Won Jung, 2023. "Heat Transfer Augmentation Using Duplex and Triplex Tube Phase Change Material (PCM) Heat Exchanger Configurations," Energies, MDPI, vol. 16(10), pages 1-19, May.
- Fang, Y. & Qu, Z.G. & Zhang, J.F. & Xu, H.T. & Qi, G.L., 2020. "Simultaneous charging and discharging performance for a latent thermal energy storage system with a microencapsulated phase change material," Applied Energy, Elsevier, vol. 275(C).
- Shahsavar, Amin & Al-Rashed, Abdullah A.A.A. & Entezari, Sajad & Sardari, Pouyan Talebizadeh, 2019. "Melting and solidification characteristics of a double-pipe latent heat storage system with sinusoidal wavy channels embedded in a porous medium," Energy, Elsevier, vol. 171(C), pages 751-769.
- Choi, Sung Ho & Ko, Han Seo & Sohn, Dong Kee, 2022. "Bubble-driven flow enhancement of heat discharge of latent heat thermal energy storage," Energy, Elsevier, vol. 244(PB).
- Yan, Peiliang & Fan, Weijun & Han, Yu & Ding, Hongbing & Wen, Chuang & Elbarghthi, Anas F.A. & Yang, Yan, 2023. "Leaf-vein bionic fin configurations for enhanced thermal energy storage performance of phase change materials in smart heating and cooling systems," Applied Energy, Elsevier, vol. 346(C).
- Mahdi, Jasim M. & Nsofor, Emmanuel C., 2017. "Solidification enhancement in a triplex-tube latent heat energy storage system using nanoparticles-metal foam combination," Energy, Elsevier, vol. 126(C), pages 501-512.
- Parsazadeh, Mohammad & Duan, Xili, 2018. "Numerical study on the effects of fins and nanoparticles in a shell and tube phase change thermal energy storage unit," Applied Energy, Elsevier, vol. 216(C), pages 142-156.
- Qiu, Lin & Ouyang, Yuxin & Feng, Yanhui & Zhang, Xinxin, 2019. "Review on micro/nano phase change materials for solar thermal applications," Renewable Energy, Elsevier, vol. 140(C), pages 513-538.
- Wołoszyn, Jerzy & Szopa, Krystian, 2023. "A combined heat transfer enhancement technique for shell-and-tube latent heat thermal energy storage," Renewable Energy, Elsevier, vol. 202(C), pages 1342-1356.
- Mehdi Ghalambaz & Hani Abulkhair & Obai Younis & Mehdi Fteiti & Ali J. Chamkha & Iqbal Ahmed Moujdin & Abdulmohsen Omar Alsaiari, 2022. "Low-Temperature Industrial Waste Heat (IWH) Recovery Using a New Design for Fast-Charging Thermal Energy Storage Units," Mathematics, MDPI, vol. 11(1), pages 1-19, December.
- Mahdi, Jasim M. & Mohammed, Hayder I. & Hashim, Emad T. & Talebizadehsardari, Pouyan & Nsofor, Emmanuel C., 2020. "Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system," Applied Energy, Elsevier, vol. 257(C).
- Zhang, Chunwei & Yu, Meng & Fan, Yubin & Zhang, Xuejun & Zhao, Yang & Qiu, Limin, 2020. "Numerical study on heat transfer enhancement of PCM using three combined methods based on heat pipe," Energy, Elsevier, vol. 195(C).
- Xiong, Qingang & Tlili, I. & Dara, Rebwar Nasir & Shafee, Ahmad & Nguyen-Thoi, Trung & Rebey, Amor & Haq, Rizwan-ul & Li, Z., 2020. "Energy storage simulation involving NEPCM solidification in appearance of fins," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
- Mohammad Ghalambaz & S.A.M. Mehryan & Hassan Shirivand & Farshid Shalbafi & Obai Younis & Kiao Inthavong & Goodarz Ahmadi & Pouyan Talebizadehsardari, 2021. "Simulation of a Fast-Charging Porous Thermal Energy Storage System Saturated with a Nano-Enhanced Phase Change Material," Energies, MDPI, vol. 14(6), pages 1-20, March.
- Aramesh, M. & Shabani, B., 2022. "Metal foam-phase change material composites for thermal energy storage: A review of performance parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
- Xue Chen & Xiaolei Li & Xinlin Xia & Chuang Sun & Rongqiang Liu, 2019. "Thermal Performance of a PCM-Based Thermal Energy Storage with Metal Foam Enhancement," Energies, MDPI, vol. 12(17), pages 1-18, August.
- Liu, Y.K. & Tao, Y.B., 2018. "Thermodynamic analysis and optimization of multistage latent heat storage unit under unsteady inlet temperature based on entransy theory," Applied Energy, Elsevier, vol. 227(C), pages 488-496.
- Joshi, Varun & Rathod, Manish K., 2019. "Thermal performance augmentation of metal foam infused phase change material using a partial filling strategy: An evaluation for fill height ratio and porosity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Yan, Peiliang & Fan, Weijun & Yang, Yan & Ding, Hongbing & Arshad, Adeel & Wen, Chuang, 2022. "Performance enhancement of phase change materials in triplex-tube latent heat energy storage system using novel fin configurations," Applied Energy, Elsevier, vol. 327(C).
- Mohammed Algarni & Mashhour A. Alazwari & Mohammad Reza Safaei, 2021. "Optimization of Nano-Additive Characteristics to Improve the Efficiency of a Shell and Tube Thermal Energy Storage System Using a Hybrid Procedure: DOE, ANN, MCDM, MOO, and CFD Modeling," Mathematics, MDPI, vol. 9(24), pages 1-30, December.
- Qu, Xiaohang & Jiang, Shan & Qi, Xiaoni, 2022. "Experimental investigation on performance improvement of latent heat storage capsule by oscillating movement," Applied Energy, Elsevier, vol. 316(C).
- Park, Jinsoo & Choi, Sung Ho & Karng, Sarng Woo, 2021. "Cascaded latent thermal energy storage using a charging control method," Energy, Elsevier, vol. 215(PA).
- Fei Ma & Tianji Zhu & Yalin Zhang & Xinli Lu & Wei Zhang & Feng Ma, 2023. "A Review on Heat Transfer Enhancement of Phase Change Materials Using Fin Tubes," Energies, MDPI, vol. 16(1), pages 1-25, January.
- Shahsavar, Amin & Goodarzi, Abbas & Mohammed, Hayder I. & Shirneshan, Alireza & Talebizadehsardari, Pouyan, 2020. "Thermal performance evaluation of non-uniform fin array in a finned double-pipe latent heat storage system," Energy, Elsevier, vol. 193(C).
- Zhang, Shuai & Li, Ying & Yan, Yuying, 2024. "Hybrid sensible-latent heat thermal energy storage using natural stones to enhance heat transfer: Energy, exergy, and economic analysis," Energy, Elsevier, vol. 286(C).
- Shahsavar, Amin & Majidzadeh, Amir Hossein & Mahani, Roohollah Babaei & Talebizadehsardari, Pouyan, 2021. "Entropy and thermal performance analysis of PCM melting and solidification mechanisms in a wavy channel triplex-tube heat exchanger," Renewable Energy, Elsevier, vol. 165(P2), pages 52-72.
- Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Huang, Xinyu & Li, Fangfei & Xiao, Tian & Guo, Junfei & Wang, Fan & Gao, Xinyu & Yang, Xiaohu & He, Ya-Ling, 2023. "Investigation and optimization of solidification performance of a triplex-tube latent heat thermal energy storage system by rotational mechanism," Applied Energy, Elsevier, vol. 331(C).
- Mahdi, Jasim M. & Nsofor, Emmanuel C., 2018. "Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins," Applied Energy, Elsevier, vol. 211(C), pages 975-986.
- Yang, Xiaohu & Wei, Pan & Wang, Xinyi & He, Ya-Ling, 2020. "Gradient design of pore parameters on the melting process in a thermal energy storage unit filled with open-cell metal foam," Applied Energy, Elsevier, vol. 268(C).
- Duan, Juan & Peng, Zeyu, 2022. "Numerical investigation of nano-enhanced phase change material melting in the 3D annular tube with spiral fins," Renewable Energy, Elsevier, vol. 193(C), pages 251-263.
- Palmer, Ben & Arshad, Adeel & Yang, Yan & Wen, Chuang, 2023. "Energy storage performance improvement of phase change materials-based triplex-tube heat exchanger (TTHX) using liquid–solid interface-informed fin configurations," Applied Energy, Elsevier, vol. 333(C).
- Huo, Sen & Cooper, Nathanial James & Smith, Travis Lee & Park, Jae Wan & Jiao, Kui, 2017. "Experimental investigation on PEM fuel cell cold start behavior containing porous metal foam as cathode flow distributor," Applied Energy, Elsevier, vol. 203(C), pages 101-114.
- Mohammad Ghalambaz & Jasim M. Mahdi & Amirhossein Shafaghat & Amir Hossein Eisapour & Obai Younis & Pouyan Talebizadeh Sardari & Wahiba Yaïci, 2021. "Effect of Twisted Fin Array in a Triple-Tube Latent Heat Storage System during the Charging Mode," Sustainability, MDPI, vol. 13(5), pages 1-15, March.
- Wang, Haoran & Ran, Xiaofeng & Zhong, Yajuan & Lu, Linyuan & Lin, Jun & He, Gang & Wang, Liang & Dai, Zhimin, 2022. "Ternary chloride salt–porous ceramic composite as a high-temperature phase change material," Energy, Elsevier, vol. 238(PB).
- Yang, Kun & Zhu, Neng & Li, Yongzhao & Du, Na, 2021. "Effect of parameters on the melting performance of triplex tube heat exchanger incorporating phase change material," Renewable Energy, Elsevier, vol. 174(C), pages 359-371.
- Zhang, Ji & Cao, Zhi & Huang, Sheng & Huang, Xiaohui & Han, Yu & Wen, Chuang & Honoré Walther, Jens & Yang, Yan, 2023. "Solidification performance improvement of phase change materials for latent heat thermal energy storage using novel branch-structured fins and nanoparticles," Applied Energy, Elsevier, vol. 342(C).
- Mohammad Javad Zarei & Hassan Bazai & Mohsen Sharifpur & Omid Mahian & Bahman Shabani, 2020. "The Effects of Fin Parameters on the Solidification of PCMs in a Fin-Enhanced Thermal Energy Storage System," Energies, MDPI, vol. 13(1), pages 1-20, January.
- Huang, Xinyu & Yao, Shouguang & Yang, Xiaohu & Zhou, Rui, 2022. "Melting performance assessments on a triplex-tube thermal energy storage system: Optimization based on response surface method with natural convection," Renewable Energy, Elsevier, vol. 188(C), pages 890-910.
- Cui, Wei & Si, Tianyu & Li, Xiangxuan & Li, Xinyi & Lu, Lin & Ma, Ting & Wang, Qiuwang, 2022. "Heat transfer enhancement of phase change materials embedded with metal foam for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
- Zhang, Ji & Cao, Zhi & Huang, Sheng & Huang, Xiaohui & Liang, Kun & Yang, Yan & Zhang, Haoran & Tian, Mi & Akrami, Mohammad & Wen, Chuang, 2022. "Improving the melting performance of phase change materials using novel fins and nanoparticles in tubular energy storage systems," Applied Energy, Elsevier, vol. 322(C).
- Xiao, Xin & Jia, Hongwei & Wen, Dongsheng & Zhao, Xudong, 2020. "Thermal performance analysis of a solar energy storage unit encapsulated with HITEC salt/copper foam/nanoparticles composite," Energy, Elsevier, vol. 192(C).
- Hashem Zadeh, Seyed Mohsen & Mehryan, S.A.M. & Ghalambaz, Mohammad & Ghodrat, Maryam & Young, John & Chamkha, Ali, 2020. "Hybrid thermal performance enhancement of a circular latent heat storage system by utilizing partially filled copper foam and Cu/GO nano-additives," Energy, Elsevier, vol. 213(C).
- Bondareva, Nadezhda S. & Sheremet, Mikhail A., 2024. "Numerical simulation of heat transfer performance in an enclosure filled with a metal foam and nano-enhanced phase change material," Energy, Elsevier, vol. 296(C).
- Huang, Xinyu & Li, Fangfei & Li, Yuanji & Meng, Xiangzhao & Yang, Xiaohu & Sundén, Bengt, 2023. "Optimization of melting performance of a heat storage tank under rotation conditions: Based on taguchi design and response surface method," Energy, Elsevier, vol. 271(C).
- Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Hamidi, E. & Ganesan, P.B. & Sharma, R.K. & Yong, K.W., 2023. "Computational study of heat transfer enhancement using porous foams with phase change materials: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
- Borhani, S.M. & Hosseini, M.J. & Pakrouh, R. & Ranjbar, A.A. & Nourian, A., 2021. "Performance enhancement of a thermoelectric harvester with a PCM/Metal foam composite," Renewable Energy, Elsevier, vol. 168(C), pages 1122-1140.
- Zhang, Shuai & Yan, Yuying, 2023. "Evaluation and optimisation of hybrid sensible-latent heat thermal energy storage unit with natural stones to enhance heat transfer," Renewable Energy, Elsevier, vol. 215(C).
- Ewelina Radomska & Lukasz Mika & Karol Sztekler & Lukasz Lis, 2020. "The Impact of Heat Exchangers’ Constructions on the Melting and Solidification Time of Phase Change Materials," Energies, MDPI, vol. 13(18), pages 1-44, September.
- Sardari, Pouyan Talebizadeh & Mohammed, Hayder I. & Giddings, Donald & walker, Gavin S. & Gillott, Mark & Grant, David, 2019. "Numerical study of a multiple-segment metal foam-PCM latent heat storage unit: Effect of porosity, pore density and location of heat source," Energy, Elsevier, vol. 189(C).
- Mohammad Ghalambaz & Hayder I. Mohammed & Jasim M. Mahdi & Amir Hossein Eisapour & Obai Younis & Aritra Ghosh & Pouyan Talebizadehsardari & Wahiba Yaïci, 2021. "Intensifying the Charging Response of a Phase-Change Material with Twisted Fin Arrays in a Shell-And-Tube Storage System," Energies, MDPI, vol. 14(6), pages 1-19, March.
- Wang, Jian & Kong, Hui & Xu, Yaobin & Wu, Jinsong, 2019. "Experimental investigation of heat transfer and flow characteristics in finned copper foam heat sinks subjected to jet impingement cooling," Applied Energy, Elsevier, vol. 241(C), pages 433-443.
- Diao, Yanhua & Kang, Yameng & Liang, Lin & Zhao, Yaohua & Zhu, Tingting, 2017. "Experimental investigation on the heat transfer performance of a latent thermal energy storage device based on flat miniature heat pipe arrays," Energy, Elsevier, vol. 138(C), pages 929-941.
- Yang, Moucun & Moghimi, M.A. & Loillier, R. & Markides, C.N. & Kadivar, M., 2023. "Design of a latent heat thermal energy storage system under simultaneous charging and discharging for solar domestic hot water applications," Applied Energy, Elsevier, vol. 336(C).